

Certified in Accordance with DIN EN ISO 9001, 8.94

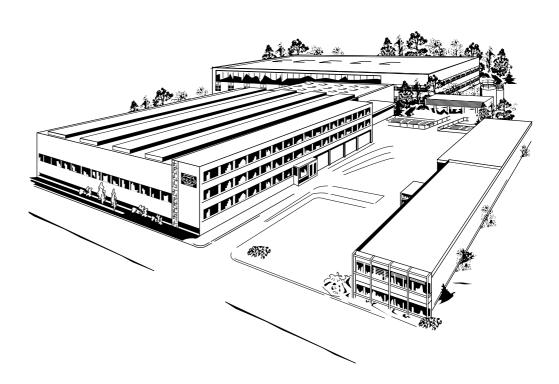
Certificate No.: ESN06623AQ97

About us

Energy in Motion

In many industries today, automation is no longer feasible without the KABELSCHLEPP cable carrier system.

Using sophisticated machines, systems and services, we can provide you with technology which is trusted throughout the world.


Technical progress, innovation and the demand for quality on a world-wide scale are basic values which our customers have a right to expect from us.

Total focus on our customers' requirements is KABELSCHLEPP'S main objective.

We are then not only able to supply the most advanced products, but can also offer a service which is second to none.

This catalog is to help you select and order the right KABELSCHLEPP steel cable carrier system and includes details of our extensive range of accessories.

KABELSCHLEPP – Profit from the expertise and experience of a highly efficient group.

KABELSCHLEPP GMBH

D-57074 Siegen · Marienborner Straße 75 D-57006 Siegen · P.O.Box 100654 Telephone +49-271-5801-0 · Fax +49-271-5801-220 http:// www.kabelschlepp.de

http:\\ www.kabelschlepp.de e-mail: info @ kabelschlepp.de

		Page				
Selection	of Cable Carrier	P 002				
Product \$	P 003					
Additional Cable Carrier Products						
Installation Variants						
Design G	P 007					
- Gene						
- Applic	P 010					
	n Considerations	P 011				
- Bend						
- Stay I						
	rial Specifications	D 020				
	rial Specificationslation Variations/Design Guidelines					
	elines for Installation of cables	1 023				
	BELSCHLEPP steel cable carriers	P 037				
Product I	Description – "Technical Data"					
Stahl verzinkt	Cable Carriers with side bands made from zinc-plated steel	P 041				
	0.11.0 : : 0000					
	Cable Carriers series 0000	D 054				
	Coble Carriere agrice 1200	D 061				
	- Cable Carriers series 1200	P 085				
	- Cable Carriers series 2500	P 099				
	- Cable Carriers series 3200					
	- Cable Carriers series 5000					
	- Cable Carriers series 6000	P 107				
	- Cable Carriers series 7000	P 107				
ROST	Cable Carriers					
fre	with side bands made from stainless steel	P 041				
	- Cable Carriers series 0600	P 043				
	- Cable Carriers series 1200					
	- Cable Carriers series 1800	P 093				
	- Cable Carriers series 2500					
	- Cable Carriers series 3200					
	- Cable Carriers series 5000	P 107				
	- Cable Carriers series 6000					
	- Cable Carriers series 7000					
	/or high grade steel/plastic flexible conduits					
	EX flexible conduits					
- CONDU	JFLEX flexible conduits	P 117				
	components					
- Suppo	ort Trays/Guide channels					
	ort Rollers					
	Strip Covers					
	ic cables					
- Strain	relief	P 128				
Appendix						
	Questionnaire					
	Order Form					
- Fax re	equest for further information	P 141				

Issue:

GB - 03.2001

Selection of Cable Carrier System

Prior to recommending a cable carrier system, we require the following details:

Application travel length

Maximum acceleration/deceleration

Travel speed

Travel frequency

Installation variants (installation diagram)

Installation widths available

Number and external diameter of cables to be installed (with/without fixed fittings)

Type of conductor (cables/hoses)

Smallest possible bend radii of the cables (in accordance with manufacturer's specification)

Environmental influences/conditions (Temperature, sunlight, humidity, contamination, abrasive substances etc.)

KABELSCHLEPP Cable Carriers are protected world-wide by international patents and conform to all valid safety technical requirements.

The following guidelines have been produced to enable you to select a suitable system.

				Clearance		r width B _k		Bend radii	Travel le	ngth L _S in r	m Carrier/	Varia	nts of carri	er/hose cr	oss-section	(Stay varia	nts – see Pa	age 014)			Available C	arrier Dividers	Bored Hole Stays	Additional Cover		-	ımics			
Product Symbol	onpo	Series	Гуре	Height h _i	<u>"</u>	n mm		in mm	(+ (+	† hose width										Vertical	Vertical / Horizontal		Options		Speed n m/s	Travel acc a _{max} ii		Technical Data See page	Туре
	P.	, v	_		From		Min	ı. Max.	- Unsupporte Arrangeme	maximui nt travel leng		Closed Frame	Frame Stay	Frame Stay	Frame Stay	Frame Stay	Frame Stay	Frame Stay	Frame Stay	Tube Stay					Unsupported arrangement and arrangement with support roller	with support carriage**	Unsupported arrange- ment and arrangement with support roller	with support carriage	***	
		0600	S 0650	31	70	400) 7	75 30		60												\	\rightarrow		2.5	4	5	8	P 043	S 0650
	E	0900	S 0950	46	125	600) 12	25 41	9	60	\											\rightarrow	\rightarrow		2.5	4	5	8	P 051	S 0950
	re to	4200	S 1250	72	130	800) 14	45 60	12	150	\											\	\rightarrow		2.5	4	5	8	P 061	S 1250
00000000	rrier; mad stee	1200	S 1252	72	130	800) 14	45 70) 12	150	\											\rightarrow	\rightarrow		2.5	4	5	8	P 073	S 1252
	e Cal ands lated	1800	S 1800	104	180	1000	26	65 140	5 18	200	\											\rightarrow	\rightarrow		2	3	3	5	P 085	S 1800
	Cable side bar	1000	S 1802	104	180	1000	26	65 89	18	200	\											\rightarrow	\rightarrow		2	3	3	5	P 093	S 1802
	ith si	2500	S 2500	180	250	1200	36	65 139	5 24	*	\									•			\rightarrow		2		3	5	P 099	S 2500
	>	3200	S 3200	220	250	1500) 47	70 178	5 25	*	\rightarrow												\rightarrow		2		2.5	4	P 103	S 3200
	inkt	5000	S 5000	150	150	1000	50	00 120	12	*	\									•					2		3	5	P 107	S 5000
	St s	6000	S 6000	240	200	1200	70	00 150	18	*	\														1.5		2	3	P 107	S 6000
		7000	S 7000	370	300	1500	110	00 240	25	*	\									•					1		1	2	P 107	S 7000
	<u> </u>	0600	SX 0650	31	70	400) 7	75 30) 4	60	\											\rightarrow	\rightarrow		2	3	5	8	P 043	SX 0650
	riers ds ma	1200	SX 1252	72	130	800) 14	45 70	8	80	\											\rightarrow	\rightarrow		2	3	5	8	P 073	SX 1252
	Carr band nless	1800	SX 1802	104	180	1000	26	65 89	13	120	•											\rightarrow	\rightarrow		1.5	1	3	5	P 093	SX 1802
	able side stai	2500	SX 2500	180	250	1200	36	65 139	5 16	×	\									•			\rightarrow		1.5	•	3	5	P 099	SX 2500
	for	3200	SX 3200	220	250	1500) 47	70 178	5 17	*	•												\rightarrow		1.5		2.5	4	P 103	SX 3200
	<u> </u>	5000	SX 5000	150	150	1000	50	00 120) 12	×	\												•		2		3	5	P 107	SX 5000
. 65	Rost frei	6000	SX 6000	240	200	1200	70	00 150	18	*	•														1.5		2	3	P 107	SX 6000
	<u> </u>	7000	SX 7000	370	300	1500) 110	00 240	25	*	\														1		1	2	P 107	SX 7000
			MF 030	24		26	3	8	3																10		20		P 113	MF 030
	<u>.</u> 2	MOBIFLEX	MF 050	44		45	5 7	75 20	3																10		20		P 113	MF 050
	its plast	BIF	MF 080	78		80) 10	00 20) 4																10		18		P 113	MF 080
	nduits and plas	M	MF 110	108		109	9 15	50 30) 4																6		15		P 113	MF 110
	ပို့		MF 170	167		170) 19	90 36	5 5																6		12		P 113	MF 170
	le Energy steel or ste		CF 055	25		45	5 6	65 15	3.0																10		20		P 117	CF 055
3 3 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	le E	EX	CF 060	40		36	6	10	3.5																10		20		P 117	CF 060
999999999	lexib	CONDUFLEX	CF 085	38		73	3 10	00 25	4.5																8		18		P 117	CF 085
	Fi	NC	CF 115	52		102	2 14	40 30	5.0																8		16		P 117	CF 115
		ည	CF 120	70		100) 15	55 20	5.5																6		15		P 117	CF 120
			CF 175	72		162	2 18	35	6.0																6		12		P 117	CF 175

Reference:

StandardCustomized Standard products

Special order as per customer specifications

P 003

On request

Please consult our specialists regarding any speeds higher than the ones indicated.

Where these values are exceeded, please contact us for advice!

P 003

^{*} Multiple band chains are available to handle larger widths!

^{**} Maximum travel speed where unsupported length is exceeded will depend mainly on the additional load installed.

^{**} Maximum travel acceleration where the unsupported length is exceeded will depend on the mass to be moved, i.e. on the cable carrier's own weight and the additional load (cables and hoses).

The values given are guidelines for mean length and width ranges.

Product Productovmbol		Series	Clearance Height h _i in mm		r width B _i mm		d radii mm =	Travel length L _S in m		
	Productsymbol	Туре		From To		Min. Max.		Unsupported Maximum arrangement travel length		
		0130	10	6	20	20	37	1.0	40	
		0132	10	6	40	20	37	1.0	40	
	10101010	0180	15	10	40	28	50	1.5	70	
		0182	15	10	40	28	50	1.5	70	
		0202	11	6	15	18	50	1.5	70	
S		0320	19	13	29	37	100	2.4	80	
Carriers	Mono	0450	28	29	103	52	200	3.0	120	
l al	IVIOIIO	0625	42	65	169	75	300	5.0	130	
		0250.030	17.5		80	28	100	2.7	60	
Cable				20	90/90/65	38	150	3.0	80	
		0345.030/.040/.050	20	15						
<u>.</u> 2		0345.060	19.5	15	65	75	150	3.0	80	
Plastic		0455.030/.040/.050	26	25	130	52	225	4.0	120	
🖺		0455.060	25	25	130	95	225	4.0	120	
	1000	0555.030/.040/.050	38	50	150	63	230	5.0	125	
	UNIFLEX	0555.060	36	50	150	100	230	5.0	125	
		0665.030/.040/.050	44	50	250	75	300	5.5	150	
		0665.060	42	50	175	120	300	5.5	150	
		0600.080	44	50	125	100	200	3.5	100	
		KC 0650	38	75	600	75	300	5.0	220	
		KE 0650	42	68	260	75	300	5.0	220	
		KC 0900	58	100	800	130	385	8.0	260	
		KE 0900	58	81	561	130	385	8.0	260	
l its		MC 0320	19	25	280	37	200	2.6	80	
Conduits	KC/KE	ME 0320	19	25	149	37	200	2.6	80	
0	IXO/IXE	MK 0475	28	24	280	55	300	3.0	120	
		MT 0475	26	24	300	75	300	3.0	100	
g		MC 0650	38	50	600	75	300	5.0	220	
Energy		ME 0650	42	50	266	75	300	5.0	220	
<u>ө</u>		MK 0650	42	50	266	75	300	5.0	220	
		MT 0650	38.5	50	600	95	300	5.0	170	
<u> </u>	MC/ME/MK	MC 0950	58	100	700	140	380	8.0	260	
LL		ME 0950	58	77	557	140	380	8.0	260	
Plastic Flexib	MITTER	MK 0950	58	77	557	140	380	8,0	260	
Pla		MT 0950	54.5	77	700	140	380	8.0	230	
-	O O O KO	MC 1250	72	100	800	180	500	10.0	320	
		ME 1250	72	103	551	180	500	10.0	320	
	NAT								320	
	IVI 1						500			
Further cable carriers	QUANTUM Cable Carrier System Almost silent cable carrier, extremely flexible and lightweight. For high accelerations and extreme operational speeds. PROfile® Cable Carrier System The extruded cable carrier system made of 100 % recyclable polypropyle is used in a wide range of industries. Festoon systems / Cable reels Available on request in many variants!						270 ropylene			
_ <u>_</u>		Please request de	·				ic applic	cation!		

Installation Variants for KABELSCHLEPP Cable and Hose Carrier Systems

Code	Symbol	Description	Steel Cable Cable Carriers	e Carriers Energy conduits
EBV 01		Horizontal arrangement "self-supporting"		
EBV 02		Horizontal arrangement "self-supporting – overhanging"		
EBV 03		Horizontal arrangement "with permissible sag"		
EBV 04		Horizontal arrangement "with support"	\rightarrow	
EBV 05		Horizontal arrangement "resting in guide channel"	\rightarrow	
EBV 06		Horizontal arrangement "with continuous support structure"	\	
EBV 07		Horizontal arrangement "rotated 90° – straight"	>	
EBV 08		Horizontal arrangement "rotated 90° – looped"	\rightarrow	
EBV 09		Horizontal arrangement "rotated 90° – circular"		
EBV 10		Vertical arrangement "standing"		
EBV 11		Vertical arrangement "hanging"		
EBV 12	1	Horizontal/vertical arrangement "combined"		
EBV 13	1	Vertical arrangement "looped"		
EBV 14		Vertical arrangement "hanging with bearing bolts"	♦	
Reference:		■ Standard	nized standard product	Special order

General Abbreviations

Please fold out this flap for ready reference when working with this brochure!

General abbreviations

When reading and using this brochure you will find the following abbreviations:

= Distance from the inside edge of the end piece/end ат divider to the centre of the first/last divider

 Centre-to-centre spacing of dividers a_{x}

 a_{1-3} = Distance between height separators in the divider

= Cavity width inside the carrier cross-section

= Width of cable carrier

B_{St} = Width of hole stays

= Width of the support tray

= Clearance inside width of the support tray

= Distance between holes (for hole stays) С

= Cable or hose diameter d

D Hole diameter in hole stay

 G_{K} = Weight of the cable carrier (without connectors)

 Weight of flexible conduit (without connectors) G_{S}

= Connection mounting height

= Installation height (required clear height) H_{7}

= Height of the support tray h_{Δ}

= Link height h_{G}

= Clearance height inside the carrier cross-section hi

KR = Bending radius of the cable carrier

= Length of the support tray L_A

 L_{B} = Length of the loop at the bend

 L_{f} Self-supporting length

= Length of the cable carrier

L_{FS} = Length of flexible conduit

= Maximum travel length of the application LS

= Longitudinal offsets between cable carrier fixed point and centre of the travel length

 I_{1-3} = Connection dimensions

= Number of dividers per cross-section

q_{FF} = Total weight of the carrier/m (Total weight of the carrier per metre) q_{FF} = Intrinsic carrier weight q_k + additional load q_7

 Intrinsic carrier weight per metre q_k

= Additional load/m of cable carrier

RKR= Reverse bending radius

= Sheet metal thickness

= Thickness of height separators

 S_{T} Divider thickness

= Pitch t

ÜR = Loop overhang (Depot)

= Distance between the fixed points (in an opposing arrangement)

= Pre-tension on the cable carrier

Further terms are given in the technical data for the carrier in each case.

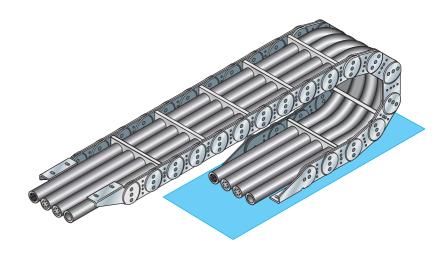
Applications

Steel cable carriers intended for specific applications offer clear advantages over plastic carriers.

- if the cables/hoses to be installed are heavy
- where long unsupported lengths must be spanned
- with heavy mechanical loads
- when moving over rough edges
- if the ambient temperature is high
- under extreme environmental conditions
- in areas at risk of explosion

Reasons for using the KABELSCHLEPP cable carrier system

- 1 Maximum additional load along the unsupported lengths
- 2 High level of operational safety
- 3 Practically maintenance-free
- 4 Easy installation
- 5 Small space requirements
- 6 Low-wear cable/hose movement
- 7 Aesthetically pleasing
- 8 Cost-effective/efficient
- 9 Accident-proof

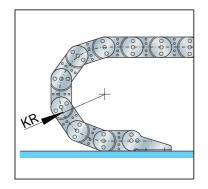


Design

KABELSCHLEPP steel cable carriers consist of two or more chain bands running parallel, made from high quality zinc-plated or stainless and acid-resistant steel.

The chain bands are joined by stays of variable widths and design. Together, they define the cavity in which cables and hoses are laid.

All chain links are engineered so that when assembled, the bend radius along the direction of travel cannot fall below the specified value.



Bend radius KR

The required bend radius is determined by the Technical Data for the electrical cables and hoses to be used.

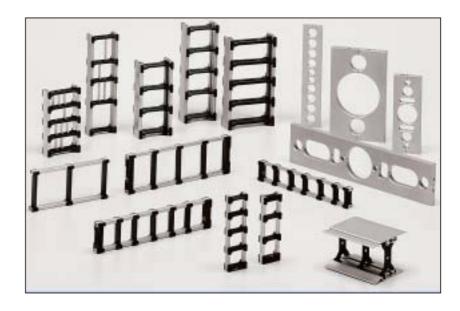
"Minimum bend radii" can be found in the specifications provided by cable and hose manufacturers.

The rule of thumb for selecting the minimum bend radius is as follows:

KR_{min} = 5...12 cable/hose-Ø diameter d

Any questions? Ask our specialists!

KR-manufacturing 0 tolerance: -5%


Standard bend radii for steel cable/hose carriers range from 75 to 2400 mm.

Stay Designs

The heart of any cable carrier is the stay which must properly accommodate the cables and hoses to be handled.

In the dynamics of the carrier's rolling movement, the stay defines by its surface structure, cross-section and stability, the efficiency and safety of every cable carrier system.

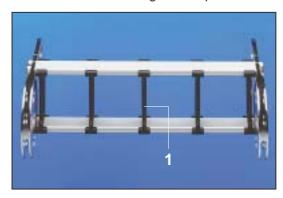
The stay, owing to the different bend radii of the cable carrier and cables/hoses installed in the chain cross section, is the point where cables/hoses come into direct contact with the carrier structure and friction/abrasion may occur.

The properties of the stay material and/or the stay cross section and the ability to ensure the gliding quality of the flexible cables/ hoses are of the utmost importance here.

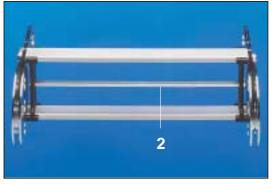
Narrow stay/divider cross-sections offer more protection when guiding the cables than wide ones.

Aluminium, a "soft material", has proved its performance qualities in direct interaction with the cables/hoses. With a small cross-section and a low intrinsic weight, it guarantees maximum stability for the dynamics of the entire cable carrier system.

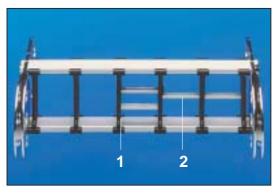
Only when using aluminium stays is it possible for cable carriers to be designed to the nearest millimetre of your application's installation width.


Arrangement of Cables and Hoses

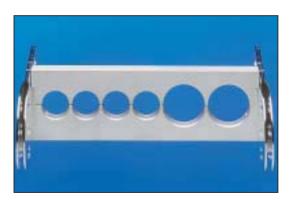
Special care must always be taken when positioning and installing cables and hoses in carriers in order to ensure operational safety and reliability.


Divider options are available to allow for the best arrangement of the cables and hoses in the carrier cavity.

We offer different arrangement options:


Using frame stays:

arrange cables/hoses over cross-section width with vertical dividers (1)



arrange cables and hoses over cross section height with horizontal separators (2)

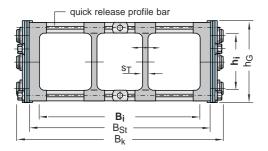
arrange cables/hoses over cross-section with a combination of vertical dividers and horizontal separators (1 + 2)

Using hole stays:

With hole stays the number and the position of the conductors and their exact outline are taken into consideration in the cross-section. The cables are guided in the neutral bending zone.

Advantage:

there is little relative movement of the cables in relation to the stay/ divider.

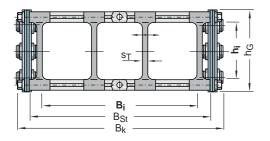


Chain cross sections / Stay variants

Movable dividers in all frame stays allow for cables and hoses to be divided in the chain cross section and prevent them from rubbing against each other.

An additional height division permits multi-layer installation.

Please follow the guidelines for installing the cables/hoses.

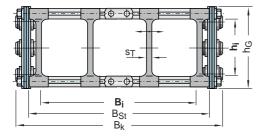

Stay variant RS 1

Frame stay – with quick-release profile bar, outside or inside

Material: Aluminium alloy

Available in widths specific to each individual client

For series: 0600, 0900 and 1200


Stay variant RS 2

Frame stay – with bolted profile bars

Material: Aluminium alloy

Available in widths specific to each individual client

For series: 0600, 0900 and 1200

Stay variant RV

Frame stay - reinforced design

Profile bars bolted inside and outside on both sides to the chain bands.

Material: Aluminium alloy

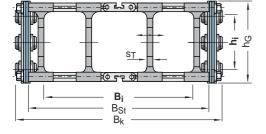
Available in widths specific to each individual client

For series: 1200

Chain cross sections / Stay variants

Stay variant RM

Frame stay - heavy duty solid design


High stability - for maximum stay widths

Profile bars are double-bolted on the inside and outside of the chain bands.

Material: aluminum alloy

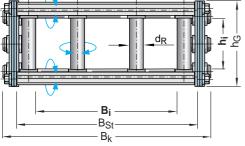
Available in widths specific to each individual client

For series: 0900, 1200 and 1800

Stay variant RMR

Frame stay with plastic roller system

For the highest specifications – protecting and supporting the cables


Material:

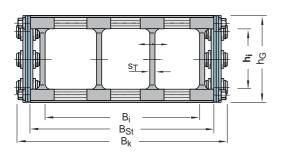
Profile rods: Aluminium alloy

Roller system: Plastic

Available in widths specific to each individual client

For series: 0900 and 1200

Stay variant RMD


Frame stay – heavy duty solid design as cover system Enclosed cable carrier system

Cover double-bolted to chain bands on the inside and the outside.

Material: aluminum alloy

Available in widths specific to each individual client

For series: 0900 and 1200

Ξ

B_i1 -

STA

- B:3

B_i2

Βį

B_{St}

Design Guidelines

Chain cross sections / Stay variants

Stay variant RMA Mounting frame stay

for cables with large diameters

Mounting frame stay (for Type S/SX 0650) and mounting frame stay combined with the standard chain stay (for Types S 1250 and S/SX 1252)

Available with through heights H_i of 130, 160 and 200 mm.

The mounting stay can be fitted inside or outside in the bending radius according to preference.

Fitted inside — note the minimum bending radius.

Fitted outside — consider the operating and installation heights.


Material:

Profile rods → Aluminium alloy

Frame stay → Plastic

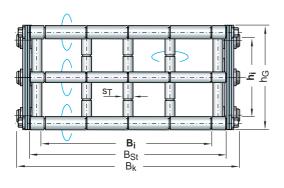
Available in widths specific to each individual client

For series: 0600 and 1200

Stay variant RR

Frame stay – Tube design Recommended for hydraulic cables/hoses

Connector profiles form a shaft, made of single tubes, thus minimizing friction between the tube stay and the cables/hoses during relative movement.


Material:

Shafts and tubes → specific

to your application

Available in widths specific to each individual client

For series: 0600, 0900, 1200 and 1800 For all other series upon request!

Special stays

Frame stay - tube design

Connector profiles form a shaft, vertical dividers and horizontal separators with single tubes minimize friction between the stay and the cables/hoses during relative movement.

Material:

Shafts and tubes

→ specific to your application

Available in widths specific to each individual client

For series: 5000, 6000 and 7000 For all other series upon request!

Chain cross sections / Stay variants

Stay variant LG

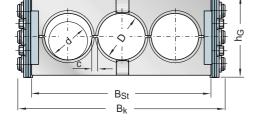
Hole stay - split design

(divided into upper and lower stay sections)

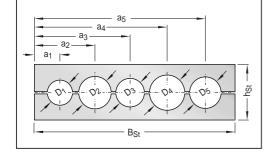
Ensures optimal installation of cables/hoses in the cable carrier's neutral axis, no relative movement between stay and

cables/hoses.

Maximum operational safety,

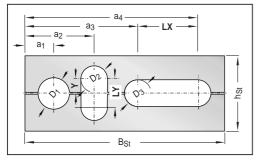

even under the most difficult conditions.

Material: aluminum alloy

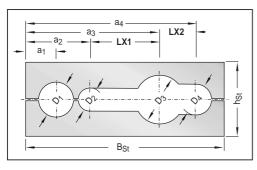

Custom manufacture of hole pattern as per customer

specification!

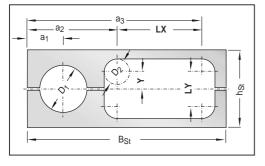
For series 0600 3200



Examples of various hole patterns:



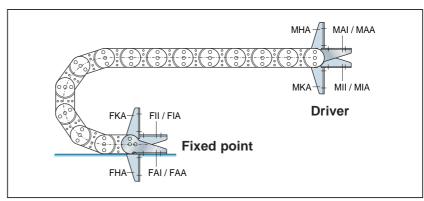
split hole stay with individual holes



split hole stay
with horizontal and vertical oval holes *

split hole stay with offset oval hole

split hole stay with rectangular long hole *

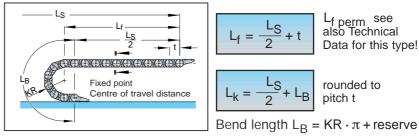

*) Where holes are placed off-centre, cables will be subjected to relative motion during movement of the carrier.

Carrier Connection

There are no special construction requirements for connecting the cable carrier to your machine components.

Several connection variants can be realised through only four types of connection element.

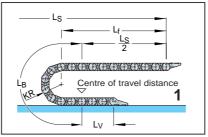
Fixed point connection:

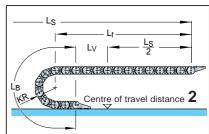

Driver Connection:

Mounting/fixing to the static part of the Connection to moving parts of machine, floor and system/installation

machines or components

We recommend that the fixed point be situated in the middle of the travel length. This results in the shortest length of cable carrier.


If the fixed point is arranged in the centre of the machine's travel length L_S the following applies:



L_{f perm} see also Technical Data for this type!

rounded to pitch t

Fixed point arrangement off-centre of the machine's travel length L_S:

$$L_{k} = \frac{L_{S}}{2} + L_{B} + L_{V}$$

rounded to pitch t

with variant 2, note unsupported length Lf (relevant to travel length)

The surface of the installation area must be flat and free from obstruction. If a proper area cannot be provided, a support tray should be installed.

Further details can be found in the section describing system components.

For better cable/hose protection, the cable carriers can be covered internally and/or externally.

Through steel strip covers made of rust and acid resistant spring steel

by the aluminium cover system (stay variant RMD)

Chain length Lk

Chain cover

Installation area

Material Specifications

The cable carrier material depends on its intended application.

Depending on the expected level of corrosion, we can offer various materials.

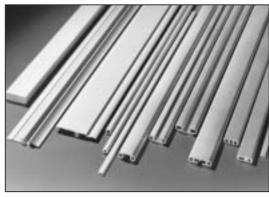
The standard design, in zinc-plated steel, cen be used for light loads. For higher loads the carriers can be chrome-plated. In the case of extremely high specifications the high grade stainless steel option is available.

Chain band material	Stahl verzinkt Galvanized zinc-plated steel	Rost frei stainless steel Material: ER 1	Rost frei stainless steel Material: ER 2		
Chemical resistance	limited	good	good		
Applications		Particularly suitable for chemical manufacture apparatus and the food industry	Particularly resistant to stress crack corrosion when exposed to chlorine and against pitting; also resistant to intercrystalline corrosion when welded		
Weather resistance	good	very good	very good		
Mechanical specification	wear-resistant	wear-resistant	particularly wear-resistant, good mechanical properties		
Typical/preferred areas of application	General machine building industry, welding and punching machines, steel works and rolling mills, automotive industry, conveyor systems etc.	Chemical manufacturers, food and dairy industries, breweries	Chemical and petro-chemical industries, nuclear-technology, salt water		

Material Details - Alloy Components

The advantages of alloys lie in the combination of mechanical, physical and chemical properties of these materials.

Material: Aluminium Alloy


Light, strong, hard, smooth and resistant

Modern design

Optimum friction and wear characteristics

Technical Data:

Light metal alloys show no tendency towards brittleness at low temperatures.

Application: Hole stays, frame stay profiles, profiles to separate the cables/hoses in the chain cross-section

Material Specifications - Plastic components -

Table:

Chemical resistance of plastic components

Abbreviations:

resistant

limited resistance

X non-resistant

 ∇ soluble

G = saturated diluted solution

H = commercial grade

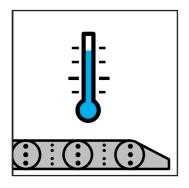
TR = technically pure

The table on the right shows that plastic components should not be used when exposed to acid agents.

Please contact us regarding materials not listed in the table!

Material:

KS 74265, reinforced fibre-glass special plastic

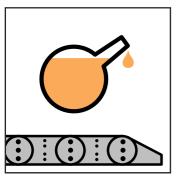

Standard colour: black

The plastic used is free of halogens, silicon and heavy metals such as lead and cadmium. No formaldehydes are used in the manufacturing process.

Plastic components meet food industry standards and can be used without restriction.

Agent	percentage of mass	temperature °C	Resistance
Acetone	TR		
Formic acid	10		
Ammonia (aqueous)	TR	+ 70	
Ammonia		+ 20	
Benzine	Н	85	
Benzol	Н		
Bitumen	Н		
Boric Acid (aqueous)	Н		
Butyric acid	20		
Calcium chloride (aqueous)	GL	23	
Chlorine, chlorinated water			
Chlorine water	Н		×
Chromic acid (aqueous)	10		×
Diesel oil	Н		
Acetic acid aqueous, conc.	95		×
Acetic acid (aqueous)	10		
Ethanol	40		
Ethyl acetate	TR		
Paints & lacquers			
Greases and waxes	Н		
Liquid petrol. gas (DIN 51622)			
Fluorinated hydrocarbons			
Formaldehyde and polymac.	TR		
Formaldehyde (aqueous)	30		
Hydraulic oils	Н		
Potassium hydroxide	10		
Potassium chloride (aqueous)	10		
Potassium nitrate (aqueous)	10		
Methyl acetate	TR		
Milk	Н		
Lactic acid (aqueous)	10		
Lactic acid	90		×
Mineral oil	Н		
Sodium carbonate (aqueous)	10		
Oil/edible and lubricating	Н		
Oleic acid	Н		
Paraffin, paraffin oil	Н		
Polyester resins	Н		
Propane gas, propyl. hydride	TR		
Mercury	TR		
Hydrochloric acid (aqueous)	>20		∇
Hydrochloric acid	2		×
Lubricants, edible fats	Ну		
Vaseline	Н		
Tartaric acid (aqueous)	10		
Tartaric acid	50		
Xylene	TR		

Environmental influences

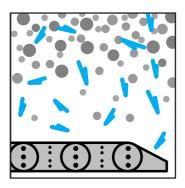


Temperature

The cable carriers, depending on the stay type, can be used in the following temperature ranges:

Stay Type	Temperature range
Frame stays with plastic elements	- 25 °C to + 100 °C
Bolted aluminium stays	- 25 °C to + 250 °C
Bolted tube stays (total steel design)	- 25 °C to + 400 °C

Please comply with the permissible temperature range of the cables/hoses to be installed!



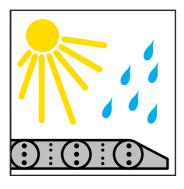
Chemical Influences

KABELSCHLEPP Cable Carriers with steel chain bands are resistant to many chemical influences.

Please note that zinc-plated steel cable carriers are not resistant to acid.

If the cable carriers are to be used in a harsh environment, we recommend the type with chain bands made from rust-and acid-resistant steel.

Dust / Chips


Our cable carriers with steel band covers or our aluminium cover systems provide protection for the cables/hoses from dust, contaminants and other mechanical influences.

Steel strip covers

→ see system components

Stays with aluminium covers

→ see stay variant RMD

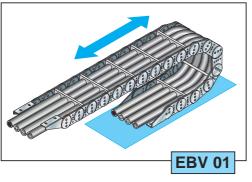
Humidity / UV Influences

Steel cable carriers can also be used in humid areas or outside, since they are corrosion-resistant.

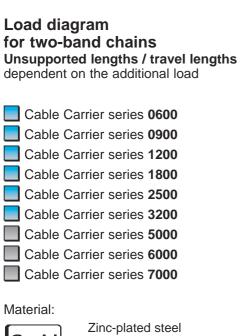
The plastics used for the stays are UV resistant.

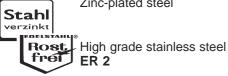
Explosion Protection

Cable carriers with steel chain bands are conductive and do not become statically charged. They can be used in confined areas liable to contain explosive mixtures.


It is necessary to earth the cable carrier at the connection.

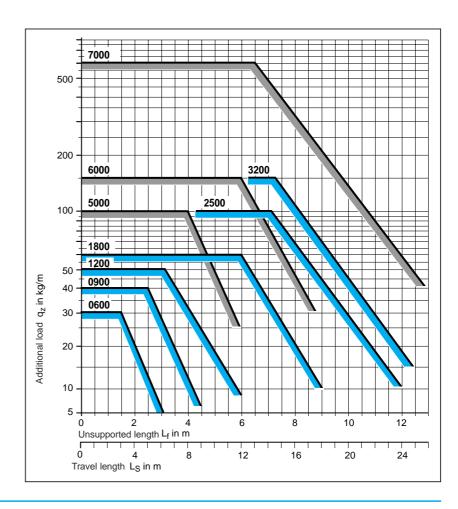
Installation variants


Horizontal unsupported arrangement



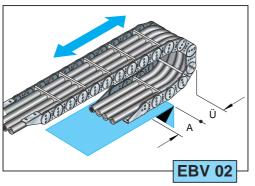
The installation variants illustrated show the wide variety of movements which can be realised with one single cable carrier.

Definition:


The upper run of the cable carrier stands free, i.e. unsupported and without sag, **parallel** over the entire supported lower run.

With high grade stainless steel type ER1, the unsupported length L_f is reduced by approx. 30 %

Details can be found with the Technical Details for this type.

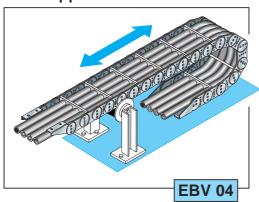

Note:

If you are unable to find a suitable cable carrier type for your particular application among the "unsupported arrangement diagrams" we recommend that the following checks are carried out:

- Provide support for the cable carrier in the unsupported area (see installation variant EBV 04)
- Select the "gliding in a guide channel" cable carrier system (see installation variant EBV 045).
- Use the cable carrier system "with continuous support structure" (see installation variant EBV 06)

Horizontal arrangement self-supporting-with overhang

Definition:


The lower run of the cable carrier is not supported over its total travel length.

We will be happy to calculate the required measurements A + Ü for your individual application.

$$\ddot{U}_{\text{max}} \leq \frac{L_f}{4}$$

Allow us to plan your application for you.

Horizontal arrangement with support

Definition:

If the self-supporting length of the cable carrier is exceeded, the upper run can be supported.

Instead of using a KABELSCHLEPP cable carrier with support you should however consider selecting the next largest type, if space permits.

Support Roller(s)

Arrangement of support

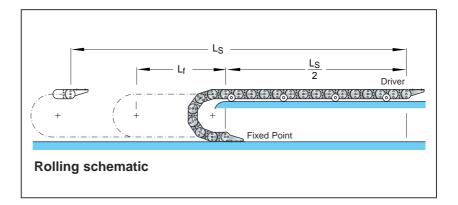
Arrangement using one support roller:

When
$$L_S < 3 L_f$$

$$a_R = \frac{L_S}{6}$$

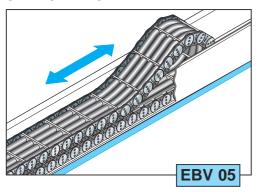
The distance of the support to the fixed point in this arrangement is approx. 1/6 of the total travel length.

Rolling schematic Ls Ls Ls Ls Driver Fixed Point Ls 3


Special design with lateral rollers:

When $L_S < 4 L_f$

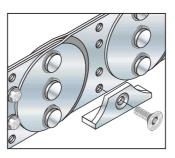
This arrangement is used when the upper run (behind the fixed point) cannot be supported by a support roller.


Lateral rollers are mounted onto the chain links.

This kind of installation needs a flat surface, in certain cases a support tray may need to be installed (see system components).

Horizontal arrangement gliding in a guide channel

Definition:


The upper run of the cable carrier **glides** on the lower run or on a sliding surface of the relevant guide channel.

Application:

For long travel lengths, which can no longer be realised in an unsupported design.

Condition:

The cable carriers **must** be placed in a channel.

Glide elements:

Glide shoes are bolted to the side plates of the cable carrier.

KABELSCHLEPP is able to supply attachable glide shoes made of plastic materials with special elastic properties.

The glide friction coefficient can be reduced to a value of μ < 0.2!

Single-sided arrangement of Cable Carrier

Determining the chain length:

$$L_k = \frac{L_S}{2} + L_B + KR$$

rounded to pitch t

B → see technical data for selected chain type!

Ls Driver Driver Fixed point LKA

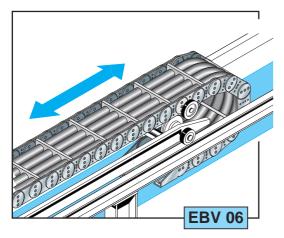
Opposing arrangement of Cable Carrier

The chain length is determined as for the single-sided arrangement!

It should be noted that for a moving application, both Cable Carriers should be designed to the same length and width.

Design information:

The support construction of the guide channel needs to have the required stability.


Technical data – Dimensional details of guide channels

see system components.

Because of the many design parameters which need to be considered such an installation as this should be planned and designed by our engineers!

Horizontal arrangement with continuous support structure

If the structural situation does not allow for the installation of a standard cable carrier or a carrier with support rollers-owing to the total travel length, acceleration or travel speed, a carriage system can be used instead.

Again, the basic element is the cable carrier.

Cable carrier installations are particularly suited to use on exposed manufacturing plant, for large loads, long travel lengths and high travel speeds.

Owing to the multitude of parameters which must be taken into consideration, the system should be designed by our specialists!

Cable Carrier system Type 225

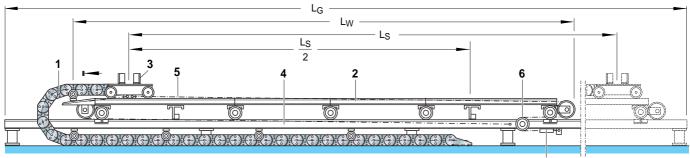
The KABELSCHLEPP type 225 carriage system is used either in a single-sided arrangement with one cable carrier or in an opposing arrangement with two cable carriers.

A rolling carriage supports the cable carriers over their entire length.

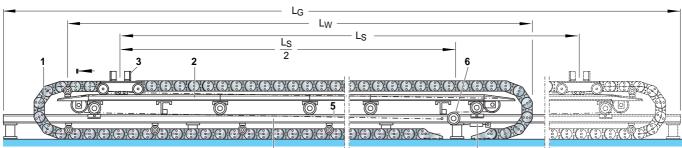
The support structure is moved in both directions by a tension cable system fixed to the driver.

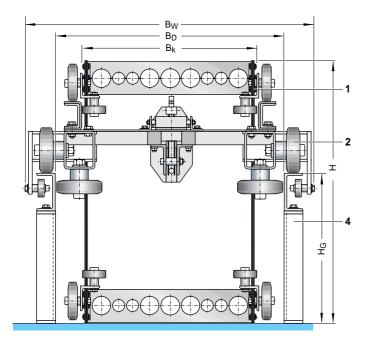
Because of the roller support and roller guidance of the cable carriers on the support carriage, which itself is gliding on the rolling carriage, frictional forces on the system are minimal.

To date, KABELSCHLEPP has supplied systems with the following specifications:


Maximum total travel length L_{s max} = 222 m

Maximum travel speed $v_{max} = 4 \text{ m/s}$


Maximum acceleration $a_{max} = 8 \text{ m/s}^2$


Cable Carrier System Type 225

- one sided arrangement (schematic illustration)

- opposing arrangement (schematic illustration)

Cross-section view of cable carrier system

The KABELSCHLEPP cable carrier system type 225 consists of the following components:

- Cable Carrier(s)
 with running and guide rollers attached to the side
- **Support carriage** with running and guide rollers providing support over the entire length
- Driver carriage
 with running and guide rollers
- 4 Rolling carriage
- 5 Tension cable
- 6 Tension cable roller
- 7 Tensioning device

Abbreviations:

B_D = Clear width in rolling carriage

B_G = Overall width of rolling carriage

 B_k = Width of cable carrier(s)

B_W = Support carriage width (max. width)

H = Installation height of cable carrier(s)

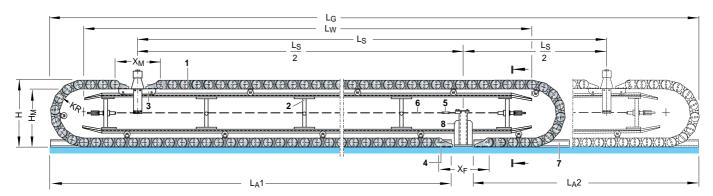
 H_G = Rolling carriage height

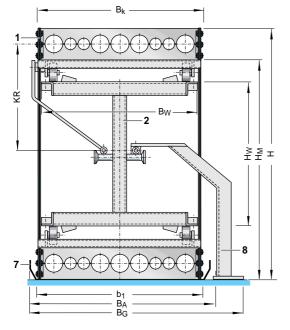
L_G = Rolling carriage length

 L_s = Travel length

-W = Support carriage length

Cable Carrier System Type 228


For arrangement of Cable Carriers running in opposite directions!


The cable carriers with running rollers are supported along their entire length by the support carriage which travels with the system.

The support carriage is moved by means of a tension cable system.

This cable carrier system requires less width than the Type 225 cable carrier system. The overall width is only slightly greater than the chain width B_k.

General view of the Cable Carrier System (schematic illustration)

The KABELSCHLEPP cable carrier system Type 228 consists of the following components:

- Cable Carrier(s) with running rollers
- Support carriage, supporting carrier(s) along their entire length
- Driver carriage with running rollers
- **Fixed point connection**
- Cable tensioning device
- Tension cable with guiding rollers
- Support tray
- Tension cable anchor at the fixed point

Cross-sectional view of the cable carrier system

Abbreviations:

 B_A = support tray width

= clear width of support tray

B_G = overall system width = cable carrier width

B_W = support carriage width

= Installation height of cable carriers

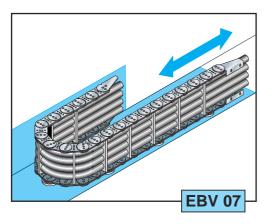
= driver carriage height H_W = support carriage height KR = Bend radius of cable carriers

= support tray length

= Travel length

support carriage length

distance between connections at


fixed-point

= Distance between connections at

driver

Horizontal Arrangement rotated through 90° - straight

This installation variant can be designed with all steel Cable Carriers.

The Cable Carrier used in the traditional horizontal arrangement is rotated through 90°. It glides on the outside of the chain band on a tray or in a channel by means of special slides or rollers.

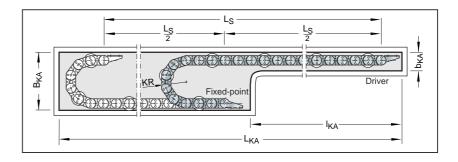
Application:

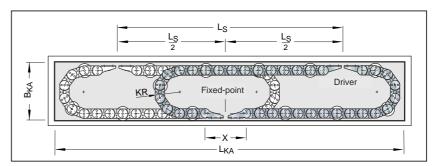
Generally, Cable Carriers turned through 90° are used if the height of the installation area is insufficient to allow a horizontal installation.

Make sure that cables/hoses are placed in the carrrier with sufficient clearance from one another.

The best technical solution for this is the hole stay, which allows for the optimum placement of cables/hoses in carrier.

Systems for extended travel lengths

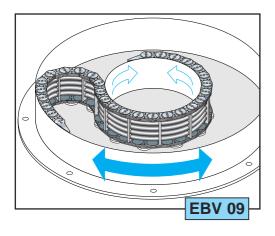

Abbreviations:


 b_{KA} = Width of restricted channel I_{KA} = Length of restricted channel

Single-sided arrangement

(with guide channel)

Opposing arrangement


The material and quality of the channel floor must be such that a low-wear process is guaranteed with the lowest frictional forces.

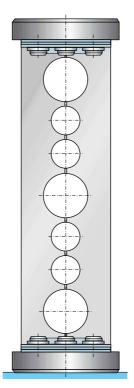
The Cable Carriers run on plastic gliders, ball castors, steel rollers or steel rollers with rubber tyres.

Distance glides or rollers are mounted to the outside and/or inside of the chain band. These prevent wearing of the channel walls and guarantee smooth operation of the system. (See installation variant EV 09).

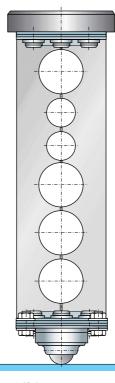
Horizontal arrangement Circular – rotated through 90°

In this arrangement the Cable Carrier is rotated through 90° for use with machine components performing circular operations.

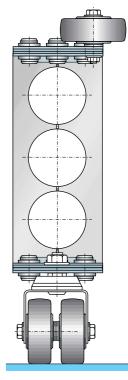
Through the combination of bend radius KR and reverse bend radius RKR, the cable carrier deliberately moves in two precisely defined circular movements.


The carrier system is mounted to the inner and outer ring of a guide channel. The moving ring (inner or outer ring) is the driver for this installation.

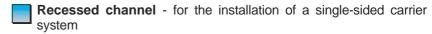
Cable carriers in this configuration will always have to be guided in a channel. The driver can be fitted either on the inside or the outside.


In order for the carrier system to perform a circular motion, a special chain link design is necessary.

The circular – rotated through 90° Cable Carriers either run on round gliders, ball castors, steel rollers or steel rollers with rubber tyres attached to the lower chain band in a sheet steel channel.


Support and guide elements (possible combinations)

Gliders on upper and lower chain band *


Gliders on upper and ball castors on lower chain band

Gliders on upper and double guiding rollers on lower chain band

*) for installations with insufficient carrier installation height H_E the glider on the upper chain band can be omitted.

The sheet steel guide channel can be delivered in two different versions:

Continuous channel - for the installation of opposing carrier systems

Spacers for gliders or rollers are mounted to the inside or outside of the upper chain band in order to prevent the cable carriers dragging along the channel walls and to ensure smooth operation of the installation.

With long travel lengths or particularly tall installations, a guide carriage is used to stabilize the cable carriers.

Single-sided arrangement

With detached guide channel (schematic illustration)

Angles of rotation of up to **600**° are possible in a single-sided arrangement!

Abbreviations:

 α = Fixed point angle

 β = Travel length

 B_F = Width of cable carrier

 b_{KA}^- = Channel width in the narrow

section

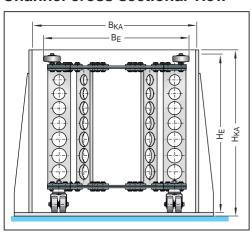
 B_{KA} = Channel width

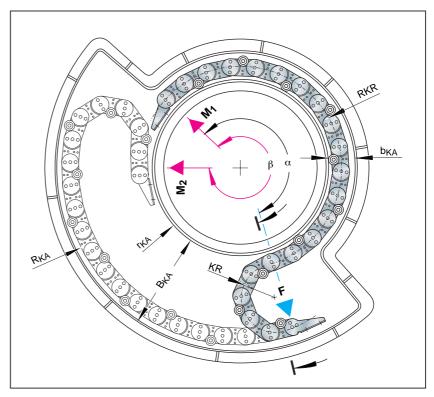
 H_{E} = Height of cable carrier H_{KA} = Height of guide channel

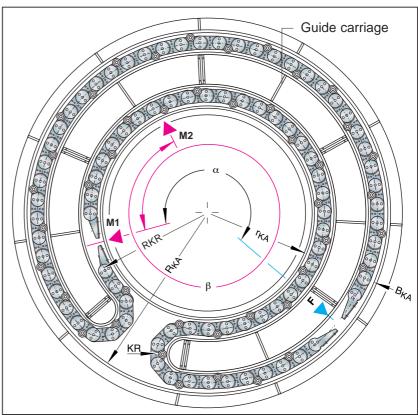
KR = Bend radius

RKR = Reverse bend radius $r_{KA} = Internal channel radius$ $R_{KA} = External channel radius$

F = Fixed point

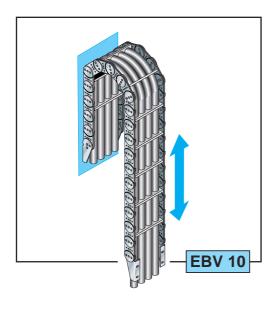

M 1 = Driver - End position 1 M 2 = Driver - End position 2




with guide carriage (schematic illustration)

Angles of rotation of up **500**° are possible with the opposing arrangement!

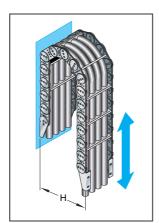
Channel cross sectional view



Owing to the numerous design options available with this installation variant, please contact us for assistance.

We can supply the complete solution: ready to assemble, installation included if required.

Vertical standing arrangement

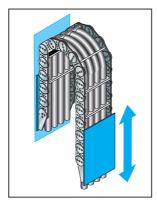

With this kind of arrangement, the following details have to be taken into consideration:

Cable Carrier

Mount the cable carrier in a way to ensure parallel movement of the active and passive runs.

No or only the minimum pre-tension should be applied to the cable carrier.

Calculation of the chain length: see page P 018.

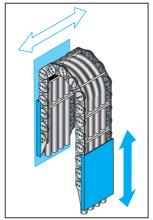


Connection elements

The connection elements have to be mounted to the machine (fixed-point/driver) to prevent the cable carrier from tilting to the outside, i.e. the connection has to be **rigid**.

H = 2 KR + hG

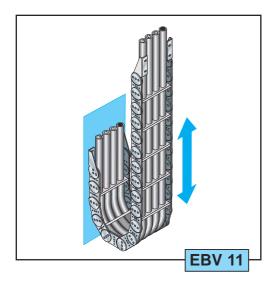
The distance between the fixed-point and driver connection depends on the selected bend radius.



Support

Generally, the cable carrier has to be supported at the fixed point and **on the outside** of the driver.

The length of the support is determined by the additional load, degree to which the carrier is filled, travel length and the selected cable carrier.

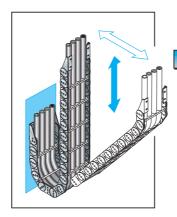


Direction of Movement

In some instances, the complete unit also moves **crosswise** to the carrier standing vertically.

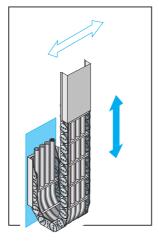
In these cases the carrier needs to be equipped with the appropriate guides to follow this movement.

Vertical hanging arrangement



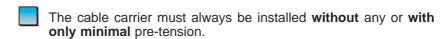
We differentiate between:

Vertical hangin arrangement
Direction of movement of Cable Carrier:
vertical only


In the case of a purely vertical movement, the cable carrier can be installed without special side supports.

Calculation of the chain length: see page P 018

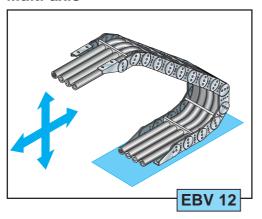
Vertical hanging arrangement
Direction of movement
of Cable Carrier:
vertical/horizontal combined


Even with a combined vertical/horizontal movement, the cable carrier can be installed without special side supports.

Vertical – hanging arrangement
Direction of movement
of cable carrier:
vertical only

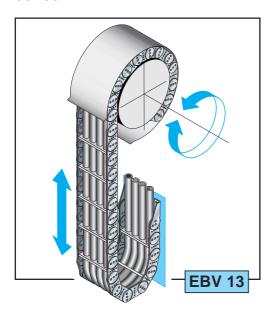
If the entire unit moves crosswise and/or along to the hanging cable carrier, an additional side guide must be fitted to the longer cable carriers.

Generally, the following applies to the vertical hanging arrangement



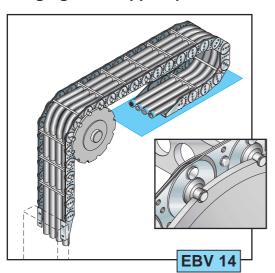
Extreme care should be taken when fixing the cables/hoses to the driver and to the fixed point.

Please comply with the **Guidelines for installing cables/hoses in KABELSCHLEPP cable carrier systems**


Horizontal/vertical arrangement Multi-axis

KABELSCHLEPP cable carriers can also be utilized for combined horizontal/vertical motion ("Multi-axis").

This arrangement requires no special structural preconditions.

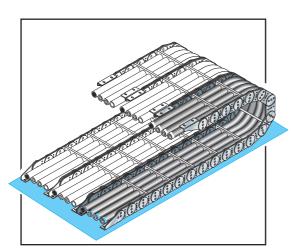

Vertical arrangement coiled

For this kind of arrangement cable carriers are available in all standard versions.

Depending on spin/acceleration appropriate guide plates should be provided to ensure optimal functionality (see illustration).

Vertical arrangement hanging with support pin

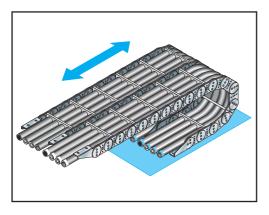
This vertical arrangement of the cable carrier with additional support elements attached offers the option of using the cable carrier as a lifting device for machine components attached to its elements (e.g. control panels, manipulators etc.).


The cable carrier is driven by sprocket wheels.

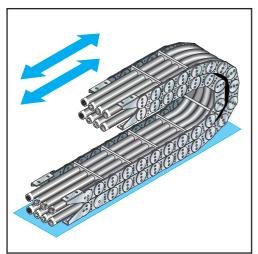
The pitch circle radius must be equal to or larger than the selected bend radius of the cable carrier.

This installation is either motor driven or a balance weight is used.

Owing to the multitude of design options inherent to this kind of configuration, please consult our technical team about this installation variant.

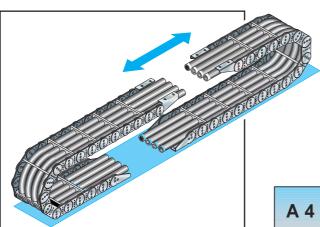

Below are some further options which are possible in connection with the installation variants described.

If the cable carrier cross section is inadequate to accomodate the number of cables/hoses, the following installation options are available:


Adjacent arrangement

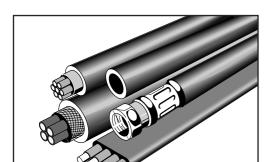
possible with all cable carriers and hoses

A 2


Multi-band arrangement possible with all cable carriers

If the available space will not allow a cable carrier system to be installed because of the required width, a nesting or opposing system can be arranged.

Nesting arrangement possible with all cable carriers and hoses.

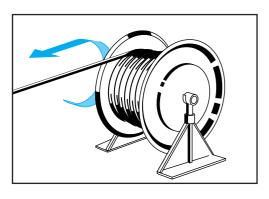

Opposing arrangement possible with all cable carriers and hoses.

Guidelines

For the installation of cables/hoses in KABELSCHLEPP Steel Cable Carriers

Extreme care must be taken when installing supply cables in cable carriers or flexible conduits.

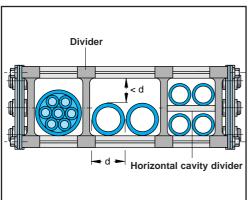
Please always observe the following:


Only electric cables suitable for use in a cable carrier system should be used.

Hoses must be highly flexible and may only contract or expand slightly in length when under pressure.

Information on the properties of hoses with regard to length can be found in the hose manufacturer's catalogue.

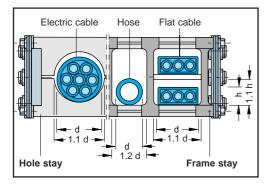
The weight distribution in the chain stay and/or in the conduit cross section must be as symmetrical as possible.


We will supply the optimal cables/hoses for your application.

Cables should be installed twist-free into the cable carrier and should be of an adequate length. In the case of electric cables, 0.2 % of the cable length should be held at the fixed point as a reserve length.

Cables must be rolled tangentially off rings or drums.

Never take up cables in loops!



Install the cables individually and loosely side by side!

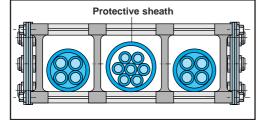
Installing several cables on top of each other and placing cables with different diameters adjacent to each other should be avoided. In the case of multi-layer installation, horizontal cavity dividers should be placed between the individual layers.

Each cable should be installed in a separate compartment.

Individually produced hole stays or sub-divisions through dividing stays in the frame stay prevent cables/hoses installed adjacent to each other from rubbing. If several cables have to be installed next to each other without dividers, make sure that the remaining clearance is less than the cable diameter, to prevent the cables from twisting around each other.

The supply cables must be able to move freely within the cable carrier. They must not be attached to the carrier, nor should they be bound together.

Divider bars <u>must always</u> be placed between layers of installed flat cable.

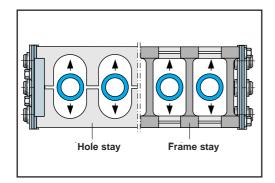

To calculate the required clearance, the following apply as reference values:

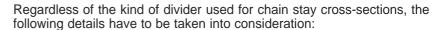
for round cables: 10% of the cable diameter

for flat cables: 10% each of either the cable width or the cable thick-

ness

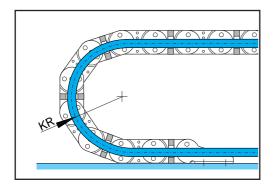
for hoses: 20 % of the hose diameter



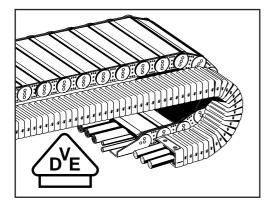

Highly flexible, thin cables with low bending strength should be installed loose side by side and arranged in a protective sheath.

The cross section of the protective sheath should be chosen considerably larger than the total of the individual cable cross sections.

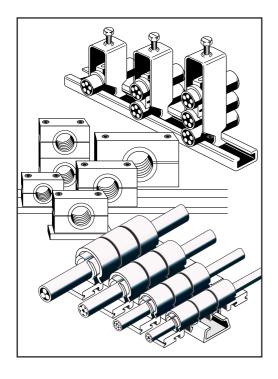
As a reference value for measuring the cross section, each cable should have a clearance of approx. 10 % of its diameter.



Pressure hoses must be able to move freely, as they may contract or expand with pressure fluctuations.


Contraction or expansion can only be compensated for in the bend radius section of the carrier.

In order to calculate the necessary clearance, please refer to hose manufacturers' information with regard to linear expansion or contraction.

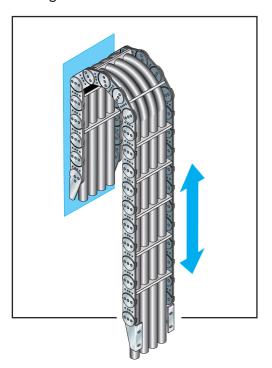

In general, it is very important that the cables/hoses pass through the neutral bend radius without any restriction.

When stacking the cables/hoses remember to leave enough slack to allow them to move freely side by side.

When placing a large number of electric cables in covered cable carriers or flexible conduits the power ratings of the cables have to comply with VDE norm 0100 to avoid exceeding the maximum permissible temperatures for the respective cable and cable carrier materials.

The maximum sustained temperature should not exceed 60 °C for covered cable carriers.

Strain relief for cables is dependant upon the cable type, total carrier length and installation situation.

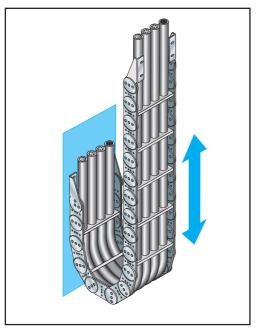

- Cables with high flexibility and low intrinsic rigidity need to be firmly clamped at the fixed point and driver. Otherwise they might snake out in between the carrier chain stays.
- With vertically hanging carriers the cables must likewise be clamped at the fixed point and driver of the carrier.
- For travel lengths in the unsupported section of the carrier, strain relief for electric cables should be provided at both the driver and fixed point of the carrier.
- For longer travel lengths strain relief for cables should only be provided at the driver end (except for cables with low intrinsic rigidity).
- Pressure hoses with threaded caps clamped in direct vicinity of the driver and fixed end of the carrier do not need strain relief. In cases where clamping is located further away from the driver and fixed end of the carrier, we recommend strain relief as for electric cables.

In general, apply compression only to the outer sheath of the cable over a wide area in order to avoid shifting of cables and individual strands being squeezed.

Installing the cables/hoses

with a vertically standing arrangement

Please ensure that:


Electric cables and hoses are installed so that they can move **freely** in the cable carrier.

The weight distribution in the cable carrier cross section must be as symmetrical as possible.

The cables/hoses must be fixed at both ends with a strain relief device.

Installing the cables/hoses

with a vertically hanging arrangement

Please ensure that:

When installing the cables care should be taken that these can run freely through the overhanging bend.

The cables should not exert any pulling forces or pressure on the stays/idividers in the bend of the cable carrier.

The cables/hoses must be fixed at both ends with a strain relief device.

It should be pointed out here that hanging electric cables/hoses extend after a certain amount of time and must therefore be **readjusted.**

Cable Carriers

made of zinc-plated steel and high grade rust and acid resistant steel

Cable Carriers Type S 0650 Type SX 0650

Profile:

Type S 0650: smallest cable carrier made of high-quality

zinc-plated steel with offset chain links.

Type SX 0650: same design, made from rust and acid-resis-

tant steel.

Stay variants: Frame stay RS

Frame stay RMA Frame stay RMA Frame stay RR Hole stay LG

Materials:

Chain bands and mounting brackets

S 0650 steel, zinc-plated

SX 0650 steel, rust and acid-resistant

→ Refer to design guidelines

Stays

Stay variant RS
Stay variant RMD
Stay variant RMA
Stay variant LG

aluminum alloy
aluminum alloy
aluminum alloy
aluminum alloy

Dividers/end pieces on frame stays

plastic

Stay variant RR **steel**, zinc-plated for type S 0650

steel, rust and acid-resistant

for type SX 0650

Chain pitch: 65 mm

Clearance height hi: 31 mm for stay variant RS

30 mm for stay variant RMD26 mm for stay variant RR200 mm for stay variant RMA

Max.

hole diameter: 40 mm for stay variant LG

Chain width: customer-specific

the desired width for every individual

application

Bend radii: 11 standard bend radii

(intermediate radii upon request)

Type S 0650 Type SX 0650 Cable Carrier design

 $\begin{array}{lll} \text{Chain pitch t} & = 65 \text{ mm} \\ \text{Height h}_{G} & = 50 \text{ mm} \end{array}$

Connection height $H_{min} = 2 KR + 50 mm$ Connection length $I_1 = 95/25 mm$ (see connection dimensions)

Fixed point Rolling schematic illustration self-supporting arrangement

Variable sizes

depending on bend radius

The connection height of the chain should be 25 mm higher than the height H_{min} !

Bend radius	75	95	115	125	135	145	155	175	200	250	300
Loop length L _B	496	558	621	653	684	716	747	810	888	1045	1202
Loop overhang (depot) ÜB	230	250	270	280	290	300	310	330	355	405	455
Height H _{min}	200	240	280	300	320	340	360	400	450	550	650

Dimensions in mm

Calculation of chain length:

$$L_k \approx \frac{L_S}{2} + L_B$$

Rounded to pitch 65 mm

Installation height

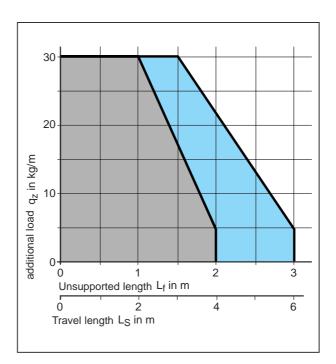
(required clearance height):

$$H_Z = H + Z$$

Pre-tension z ≈ 10 mm/m chain length

Load diagram

Unsupported length L_f and travel length L_s without support depending on additional load (see Design Guidelines)


An intrinsic chain weight of **4.5 kg/m** was used as a basis on the load diagram.

With a larger intrinsic weight (for example with stay variant RMD) the permissible additional load is reduced by the amount of the difference.

Explanation of Load diagram:

SX 0650 - Material ER 1

For circular operations, combinations of KR/RKR are possible. Please contact us for details.

A flat and level surface is required for the cable carrier to extend and retract reliably.

Under certain conditions, a support tray needs to be installed (see system components).

Type S 0650 Type SX 0650

Chain cross sections

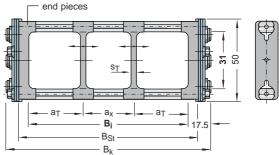
in accordance with section in schematic illustration

Stays mounted on every 2nd chain link!

Stay variant "RS 1" Frame stay with a detachable profile bar

for short to medium travel lengths and low travel speeds

L_{smax}: 6 m for S 0650


5 m for SX 0650

v_{max}: 1 m/s

Please call for advice in marginal cases.

The stay variant RS 1 can be supplied with movable dividers.

Please state the number of dividers per cross section.

Calculation of the chain width:

 $B_k = B_i + 35 \text{ mm}$

Calculation of the stay width:

 $B_{St} = B_i + 20 \text{ mm}$

 $\begin{array}{lll} B_{k\;min} & = & 100\;mm \\ B_{k\;max} & = & 300\;mm \\ s_{T} & = & 3\;mm \\ a_{T\;min} & = & 11.5\;mm \end{array}$

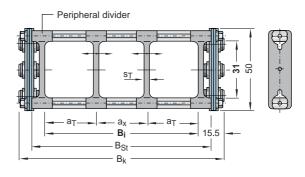
 $a_{x min} = 13 mm$

Stay variant "RS 2" Frame stay with bolted profile bars

for short to medium travel lengths and low travel speeds

L_{smax}: 9 m for S 0650 6 m for SX 0650

 v_{max} : 1.5 m/s


movable dividers.

cross section.

Please call for advice in marginal cases.

The stay variant RS 2 can be supplied with

Please state the number of dividers per

_

 $B_k = B_i + 31 \text{ mm}$

Calculation of the chain width:

Calculation of the stay width:

 $B_{St} = B_i + 16 \text{ mm}$

Chain width Bk in mm

 $B_{k \text{ min}} = 100 \text{ mm}$ $B_{k \text{ max}} = 300 \text{ mm}$

 $s_T = 3 \text{ mm}$ $a_{T \text{ min}} = 11.5 \text{ mm}$

 $a_{x min} = 13 mm$

Intrinsic chain weight for two band chains

depending on the chain width

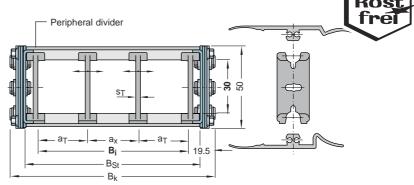
with frame stays RS 1 / RS 2

Weight of the chain bands: 3.6 kg/m

(excluding stays)

Technical Data -

Series 0600


Stahl verzinkt

Stay Variant "RMD" Frame stay - with cover **Enclosed cable carrier system**

Aluminium profiles bolted on the inside and the outside.

Standard dividers are movable.

Please indicate the number of dividers per cross-section.

Calculation of chain width:

 $B_k = B_i + 35 \text{ mm}$

Calculation of stay width:

$$B_{St} = B_i + 20 \text{ mm}$$

 B_{kmin} 100 mm

 $B_{kmax} = 500 \text{ mm}$

 $KR_{min} =$ 115 mm

3 mm

11.5 mm a_{Tmin}

13 mm a_{xmin}

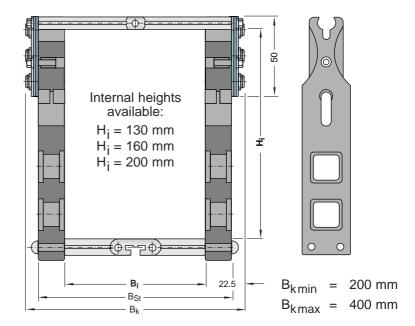
Stay Variant "RMA" Mounting frame stay

for cables with large diameters

Fitted to the inside - note minimum KR:

 $H_i = 130 \text{ mm}$ - $KR_{min} = 175 \text{ mm}$

 $H_i = 160 \text{ mm}$ - $KR_{min} = 220 \text{ mm}$

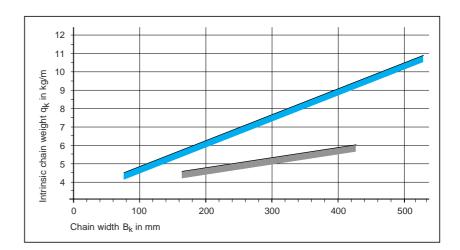

 $H_i = 200 \text{ mm}$ - $KR_{min} = 300 \text{ mm}$

Calculation of chain width:

$$B_k = B_i + 45 \text{ mm}$$

Calculation of stay width:

$$B_{St} = B_i + 30 \text{ mm}$$


Because of the design parameters which need to be considered we would ask that you consult our technical advisors!

Intrinsic Carrier Weight for two band chains

depending on the chain width

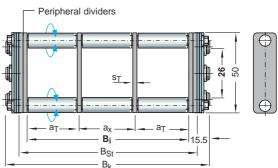
With frame stays RMD

With mounting frame stay RMA

Stay variant "RR" Frame stay - tube design

For short to medium travel lengths and low travel speeds

L_{smax}: 9 m for S 0650 6 m for SX 0650


v_{max}: 1.5 m/s

In marginal cases please consult our

technical staff!

Fixed dividers are available to separate cables and hoses across the section.

Please indicate the number of dividers needed and their desired spacing.

Calculation of chain width:

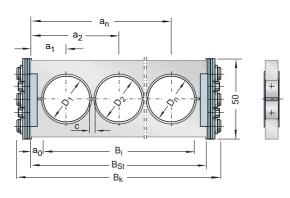
$$B_k = B_i + 31 \text{ mm}$$

Calculation of stay width:

$$B_{St} = B_i + 16 \text{ mm}$$

 $B_{kmin} = 100 \text{ mm}$

 $B_{kmax} = 400 \text{ mm}$


4 mm

 $a_{T\,min}$ 20 mm

25 mm $a_{x \min}$

Stay variant "LG" Hole stay - split design

Custom manufacture of hole pattern to your specifications.

Calculation of chain width:

$$B_k = \Sigma D + \Sigma c + 35 \text{ mm}$$

Calculation of stay width:

$$B_{St} = \Sigma D + \Sigma c + 18 \text{ mm}$$

$$B_i = B_{St} - 2a_0$$

$$B_{k \min} = 70 \text{ mm}$$

$$B_{k max} = 500 mm$$

$$D_{max} = 40 \text{ mm}$$

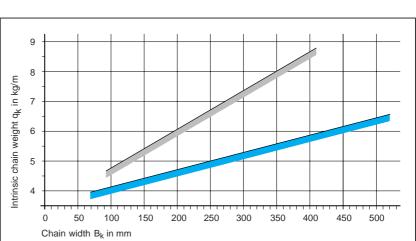
$$c_{min} = 4 \text{ mm}$$

$$a_{0 \, \text{min}} = 9 \, \text{mm}$$

Intrinsic chain weight

Hole stays are also available in an

For two band chains

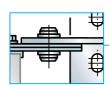

unsplit design.

Depending on chain width

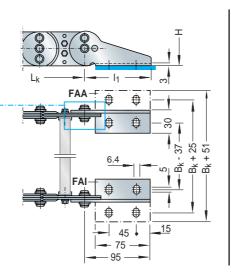
7 6 5

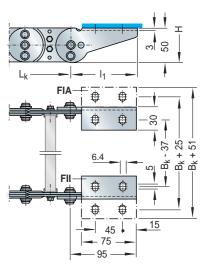
frame stay - tube design (without height dividers)

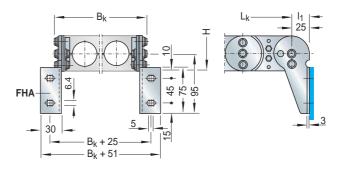
hole stays, holes account for 50 % of the area.

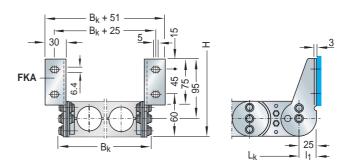


Type S 0650
Type SX 0650
Connection dimensions

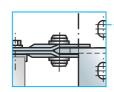

The connection variants at the fixed point and at the driver can be combined and subsequently changed if required.

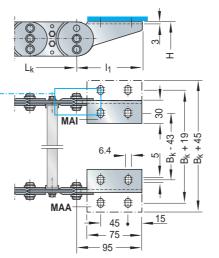

Please indicate your required connection variants in accordance with the ordering key (next page)!

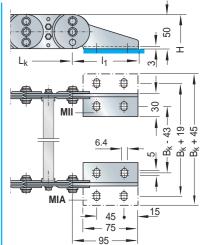

Fixed point connection



The mounting brackets at the closed end of the chains form the fixed-point.




Type S 0650 Type SX 0650


Connection dimensions (continued)

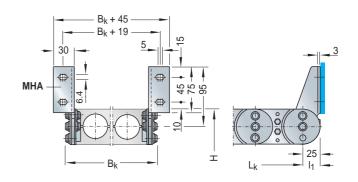
Connection brackets at the fork end of the chain form the driver

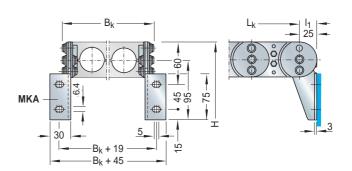
Driver Connection

Ordering key for connector:

Point of connection

F - fixed-point


M - driver


Type of connection

- A bolts facing outward (standard)
- I bolts facing inward (towards bend radius)
- H mounting brackets rotated through 90° to the outside
- K mounting brackets rotated through 90° to the inside (towards bend radius)

Connection surface

- connector surface inside (< B_k)
- A connector surface outside (> B_k)

Ordering key for the cable carrier:

S 0650 . 180 - LG - 135 - St - 1430

Example:

Cable carrier type S 0650, stay width B_{St} 180 mm - hole stay, split design (hole pattern according to your specifications), bend radius KR 135 mm, steel – zinc-plated, chain length $L_{\rm k}$ 1430 mm.

Stay width B_{St} in mm

Stay variant

Bend radius KR in mm

Chain band material

Chain length L_k in mm (without connector)

Cable Carriers Type S 0950

Profile:

Cable carrier made of high-grade steel with offset chain links

Stay variants: Frame stay RS

Frame stay RMR Frame stay RMR Frame stay RMD Frame stay RR Hole stay LG

Materials:

Chain bands and connecting brackets

Steel - zinc-plated
→ see design guidelines

Stays

Stay variant RS
Stay variant RM
Stay variant RMR
aluminium alloy
aluminium alloy

with plastic roller system

Stay variant RMD aluminium alloy
Stay variant RR Steel - zinc-plated

Dividers / end pieces

Max.

on frame stays plastic

Stay variant LG aluminium alloy

Chain pitch: 95 mm

Clearance height h_i: 46 mm for stay variant RS

43 mm for stay variant RM40 mm for stay variant RMR43 mm for stay variant RMD42 mm for stay variant RR

42 mm for stay variant RR

hole diameter: 48 mm for stay variant LG

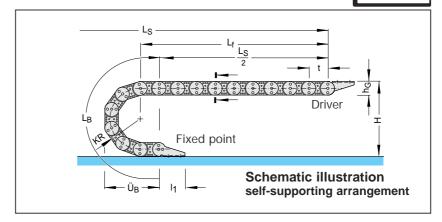
Chain width: customer-specific

the desired width for every individual

application

Bend radii: 9 standard bend radii

Intermediate radii on request.



Type S 0950 Cable Carrier design

Chain pitch t = 95 mm Height h_G = 68 mm

Connection height $H_{min} = 2 KR + 68 mm$ Connection length $I_1 = 125/34 mm$

(see connection dimensions)

Variable Sizes

depending on bend radius

The connection height of the chain should be 34 mm higher than the height H_{min} !

Bend radius	125	140	170	200	260	290	320	350	410
Bend Length LB	773	820	914	1008	1197	1291	1385	1480	1668
Bend overhang ÜB	350	365	395	425	485	515	545	575	635
Height H _{min}	318	348	408	468	588	648	708	768	888

Dimensions in mm

Calculation of chain width:

$$L_k \approx \frac{L_S}{2} + L_B$$

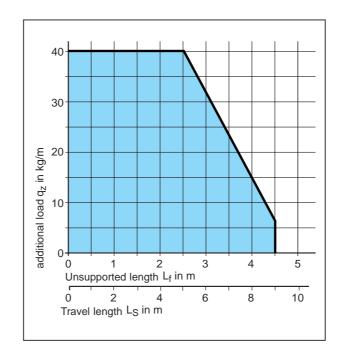
rounded to pitch 95 mm

Installation height

(required clearance height):

$$H_Z = H + Z$$

pre-tension z ≈ 10 mm/m chain length


Load diagram

(see design guidelines)

Self-supporting length L_f and travel length L_s without support depending on the additional load

An intrinsic chain weight of **7.6 kg/m** was used as a basis on the load diagram.

With a larger intrinsic weight (for example with stay variant RMD) the permissible additional load is reduced by the amount of the difference.

For circular operations, KR/RKR – combinations are possible. Please contact us for details!

A flat and level surface is required for the carrier system to be installed properly.

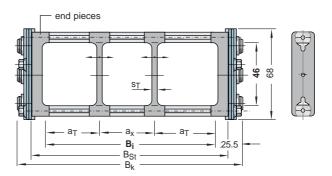
If necessary, a support tray should be installed (see system components).

Type S 0950 Chain cross sections

In accordance with sections in schematic illustration

Stays mounted on every 2nd chain link.

Stay variant "RS1" Frame stay with detachable profile bars


For short to medium travel lengths and low travel speeds.

 L_{smax} : 7 m v_{max} : 1 m/s

In marginal cases, please consult our technical staff.

Standard dividers are moveable.

Please indicate the number of dividers per cross section.

Calculation of chain width::

$$B_k = B_i + 43 \text{ mm}$$

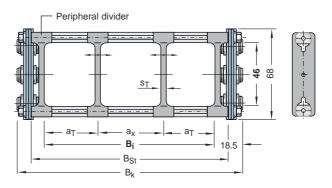
Calculation of stay width:

$$B_{St} = B_i + 24 \text{ mm}$$

$$B_{k min} = 150 mm$$

$$B_{k \text{ max}} = 300 \text{ mm}$$

$$s_T = 4 \text{ mm}$$


$$a_{T \text{ min}} = 12 \text{ mm}$$

 $a_{x \text{ min}} = 14 \text{ mm}$

Stay variant "RS2" Frame stay with bolted profile bars

For short to medium travel lengths and low travel speeds.

 L_{smax} : 10 m v_{max} : 1.5 m/s

In marginal cases, please consult our technical staff.

Standard dividers are moveable.

Please indicate the number of dividers per cross section

Calculation of chain width:

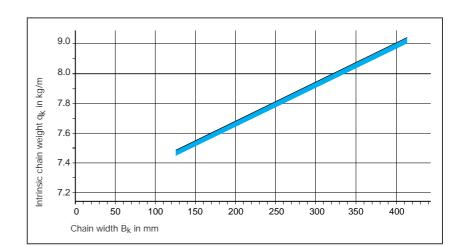
$$B_k = B_i + 37 \text{ mm}$$

Calculation of stay width:

$$B_{St} = B_i + 18 \text{ mm}$$

$$B_{k min} = 150 mm$$

$$B_{k \text{ max}} = 400 \text{ mm}$$


$$s_T = 4 \text{ mm}$$

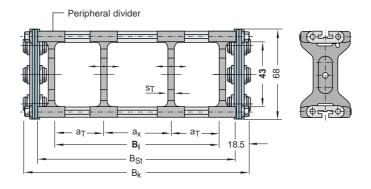
$$a_{T min} = 12 mm$$

$$a_{x min} = 14 mm$$

Intrinsic chain weight For two band chains

Depending on the chain width

With frame stays RS 1 / RS 2


Weight of the chain bands: 7.2 kg/m

(excluding stays)

Stay variant "RM" Frame stay - Solid design

Aluminium profiles double bolted on the inside and outside.

Calculation of chain width:

$$B_k = B_i + 37 \text{ mm}$$

Calculation of stay width:

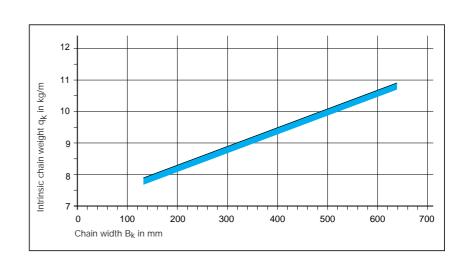
$$B_{St} = B_i + 18 \text{ mm}$$

$$B_{k min} = 125 mm$$

$$B_{k \text{ max}} = 600 \text{ mm}$$

$$s_T = 4 \text{ mm}$$

$$a_{T min} = 10 mm$$

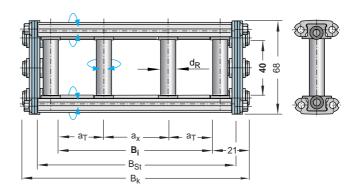

$$a_{x min} = 14 mm$$

Standard dividers are moveable.

Please indicate the number of dividers per cross section

Intrinsic chain weight for two band chains
Depending on the chain width

with frame stays RM



Stay variant "RMR" Frame stay with plastic roller system

Aluminium profiles double bolted on the inside and outside.

Specially developed for applications using hoses with soft sheaths.

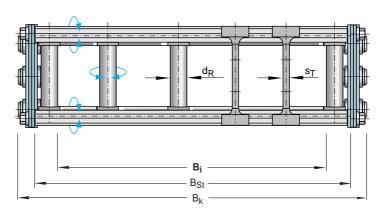
For the highest specifications - the solution which offers the most protection and support to the cables.

Calculation of chain width:

$$B_k = B_i + 42 \text{ mm}$$

Calculation of stay width:

$$B_{St} = B_i + 23 \text{ mm}$$

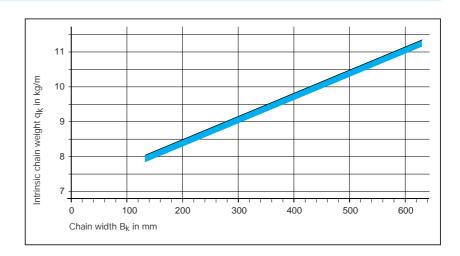

$$B_{k min} = 150 mm$$

$$B_{k \text{ max}} = 600 \text{ mm}$$

$$d_R = 10 \text{ mm}$$

$$a_{T min} = 11.5 mm$$

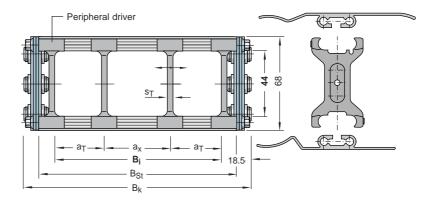
$$a_{x min} = 37 mm$$



The cross-sections of stay variant RMR can be subdivided using movable dividers of stay variant RM ($s_T = 4 \text{ mm}$). werden.

Please indicate the number of dividers per cross-section.

Intrinsic Carrier Weight for two band chains depending on the chain width


With frame stays RMR

Stay variant "RMD" Frame stay – with cover Enclosed cable carrier system

Aluminium profiles double bolted on the inside and outside.

Calculation of chain width:

$$B_k = B_i + 37 \text{ mm}$$

 $B_{k \text{ min}} = 125 \text{ mm}$

 $B_{k \text{ max}} = 600 \text{ mm}$

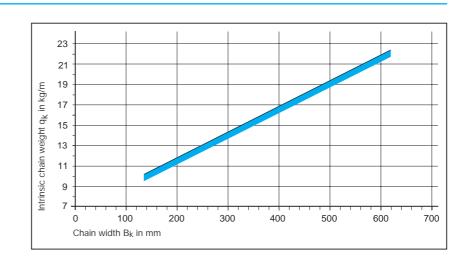
 $KR_{min} = 170 \text{ mm}$

Calculation of stay width:

$$B_{St} = B_i + 18 \text{ mm}$$

 $s_T = 4 \text{ mm}$

 $a_{T min} = 12 mm$


 $a_{x min} = 14 mm$

Standard dividers are movable.

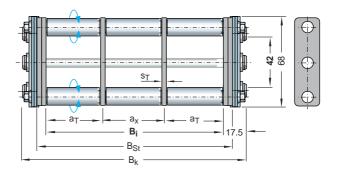
Please indicate the number of dividers per cross-section.

Intrinsic Carrier Weight for two band chains depending on the chain width

With frame stays RMD

Stay variant "RR" Frame stay – Tube design

for short to medium travel lengths and low travel speeds


 L_{smax} : 10 m v_{max} : 1.5 m/s

Please consult our technical staff in

marginal cases.

Fixed dividers are available for separating cables/hoses across the width of the carrier section.

Please state the number of, and distance between, the dividers.

Calculation of chain width:

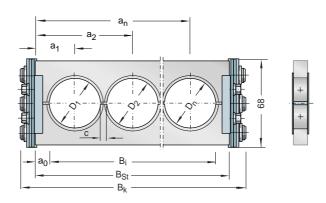
$$B_k = B_i + 35 \text{ mm}$$

Calculation of stay width:

$$B_{St} = B_i + 16 \text{ mm}$$

 $B_{k min} = 150 mm$

 $B_{k \text{ max}} = 500 \text{ mm}$


 $s_T = 4 \text{ mm}$ $a_{T \text{ min}} = 20 \text{ mm}$

 $a_{x min} = 20 mm$

Stay variant "LG" Hole stay – split design

Custom manufacture of hole pattern according to your specifications!

Hole stay is available in an unsplit design.

Calculation of chain width:

$$B_k = \Sigma D + \Sigma c + 43 \text{ mm}$$

Calculation of stay width:

$$B_{St} = \Sigma D + \Sigma c + 22 \text{ mm}$$

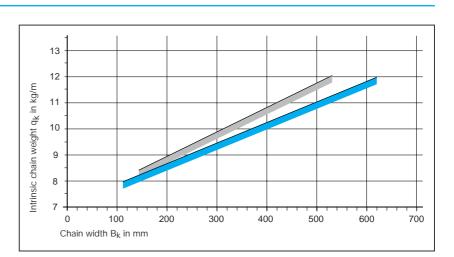
$$B_i = B_{St} - 2 a_0$$

 $D_{\text{max}} = 48 \text{ mm}$

 $a_{0 \, \text{min}} = 11 \, \text{mm}$

 $c_{min} = 4 \text{ mm}$

 $B_{k \, min} = 70 \, mm$

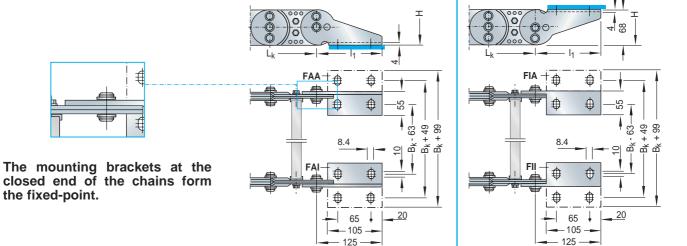

 $B_{k \max} = 600 \text{ mm}$

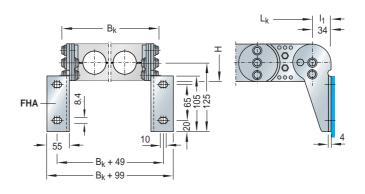
Intrinsic chain weight for two band chains

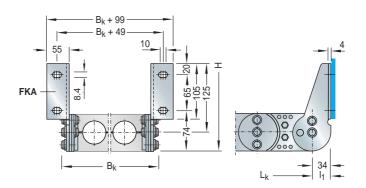
Depending on the chain width

Frame stays - tube design (excluding height sub-division)

Hole stays: holes account for 50 % of area

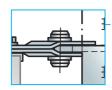


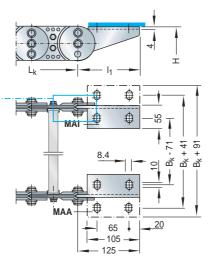

Type S 0950 Connection dimensions

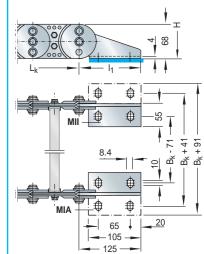

The connection variants at the fixed-point and the driver can be combined and subsequently changed if required.

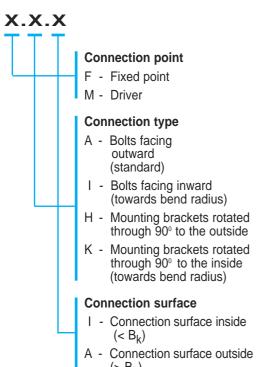
Please indicate required connection variants in accordance with the ordering key (next page).

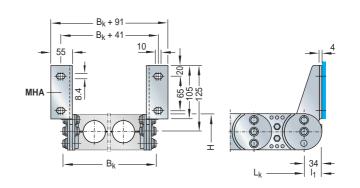
Fixed-point connection

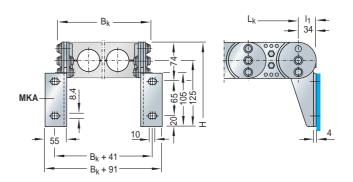



Type S 0950 **Connection dimensions**

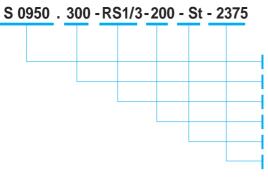

(continued)


The mounting brackets at the forked end of the chain form the driver!


Driver connection



Ordering key for the connection:



Ordering key for the cable carrier:

Example:

Cable carrier type S 0950, stay width $B_{\mbox{St}}$ 300 mm - Frame stay RS1 with 3 movable dividers, bend radius KR 200 mm, made of zinc-plated steel, chain length Lk 2375 mm.

Type

Stay width BSt in mm

Stay variant

Bend radius KR in mm

Chain band material

Chain length L_k in mm (excluding connection)

Profile:

Cable Carriers Type S 1250

Cable Carriers made of high-quality zinc-plated steel with offset chain links

Stay variants: frame stay RS

> frame stay RV frame stay RM frame stay RMR frame stay RMD frame stay RMA frame stay RR hole stay LG

Materials:

Chain bands and mounting brackets

Steel - zinc-plated steel

→ (see design guidelines)

Stays

Stay variant RS aluminum alloy Stay variant RV aluminum alloy Stay variant RM aluminum alloy aluminum alloy Stay variant RMR

with plastic roller system

Stay variant RMD aluminum alloy Stay variant RMA aluminum alloy Stay variant RR zinc-plated steel

Dividers/end

pieces on frame stays

plastic

Stay variant LG aluminum alloy

Chain pitch: 125 mm

Clearance height hi: 72 mm for stay variants RS

> 72 mm for stay variants RV 69 mm for stay variants RM **66 mm** for stay variants RMR 69 mm for stay variants RMD 200 mm for stay variants RMA **66 mm** for stay variants RR

Max.

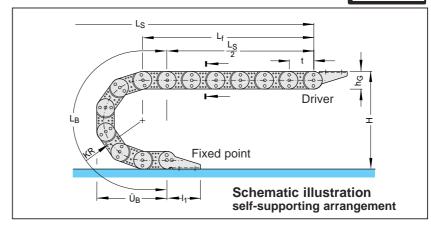
hole diameter: 74 mm for stay variants LG

Chain width: customer-specific

the desired width for every individual

application

Bend radii: 12 standard bend radii


(intermediate radii upon request).

Type S 1250 Cable Carrier design

Chain pitch t = 125 mmHeight $h_G = 94 \text{ mm}$ Connection height $H_{min} = 2 \text{ KR} + 94 \text{ mm}$ Connection length $I_1 = 155/47 \text{ mm}$ (see connection dimensions)

Variable sizes depending on the bend radius

Dimensions in mm

Bend radius	145	200	220	260	300	340	380	420	460	500	540	600	1000
Bend length L _B	955	1128	1191	1317	1442	1568	1694	1820	1945	2071	2196	2385	3640
Bend overhang Ü _B	442	497	517	557	597	637	677	717	757	797	837	897	1297
Height H _{min}	384	494	534	614	694	774	854	934	1014	1094	1174	1294	2094

The connection height of the chain should be 47 mm higher than the height H_{min} !

Calculation of chain length:

$$L_k \approx \frac{L_S}{2} + L_B$$

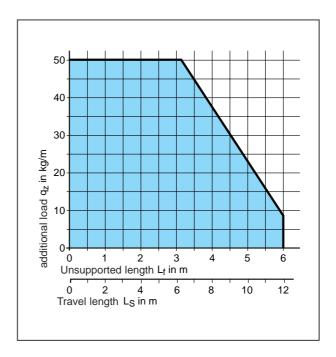
rounded to pitch 125 mm

Installation height

(required clearance height):

$$H_Z = H + Z$$

pre-tension z ≈ 10 mm/m chain length


Load diagram

(see design guidelines)

Self-supported length L_f and travel length L_S without support depending on the additional load

An intrinsic chain weight of **13 kg/m** was used as a basis on the load diagram.

With a larger intrinsic weight (for example with stay variant RMD) the permissible additional load is reduced by the amount of the difference.

For circular movements, KR/RKR – combinations are possible. Please contact us for details!

A flat and level surface is required for the cable carrier system to be installed properly.

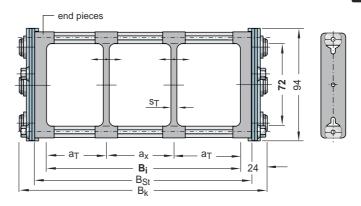
If necessary, a support tray should be installed (see system components).

Type S 1250 Chain cross sections

in accordance with section in schematic illustration

Stays mounted on every 2nd chain link!

Stay variant "RS 1" Frame stay with detachable profile bar


for short to medium travel lengths and low travel speeds

 $\begin{array}{ll} L_{smax} \colon \ 8.5 \ m \\ v_{max} \colon \ 1 \ m/s \end{array}$

In marginal cases, please consult our technical staff.

The stay variant RS 1 can be supplied with movable dividers.

Please indicate the number of dividers per cross section.

Calculation of chain width:

$$B_k = B_i + 48 \text{ mm}$$

Calculation of stay width:

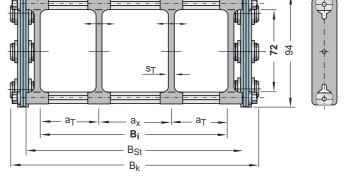
$$B_{St} = B_i + 24 \text{ mm}$$

Peripheral divider

 $B_{k \text{ min}} = 200 \text{ mm}$

 $B_{k \text{ max}} = 400 \text{ mm}$ $S_{T} = 5 \text{ mm}$

 $a_{T min} = 12.5 mm$


 $a_{x min} = 15 mm$

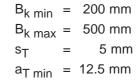
Stay variant "RS 2" Frame stay with bolted profile bars

for short to medium travel lengths and low travel speeds

 L_{smax} : 12 m v_{max} : 1.5 m/s

In marginal cases, please consult our technical staff.

Standard dividers are moveable.


Please indicate the number of dividers per cross section.

Calculation of chain width:

$$B_k = B_i + 44 \text{ mm}$$

Calculation of stay width:

$$B_{St} = B_i + 20 \text{ mm}$$

 $a_{x \, min}$

15 mm

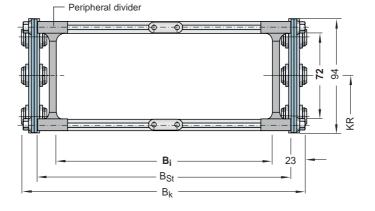
Intrinsic chain weight for two band chains

Depending on the chain width

with frame stays RS 1 / RS 2

13.5 13.5 13.5 14.5 12.5 0 50 100 150 200 250 300 350 400 450 500 Chain width B_k in mm

Weight of the chain bands: 12 kg/m


(excluding stays)

Stay variant "RV" Frame stay – reinforced design

Aluminum profile bars, double-bolted on the inside and outside.

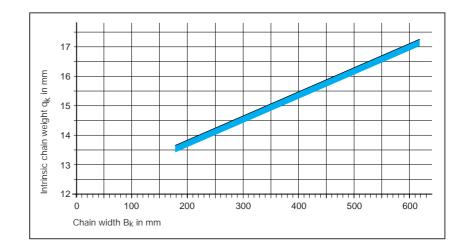
Calculation of chain width:

$$B_k = B_i + 46 \text{ mm}$$

Calculation of stay width:

$$B_{St} = B_i + 22 \text{ mm}$$

 $B_{k \text{ max}} = 600 \text{ mm}$


 $B_{k \min} = 200 \text{ mm}$

Intrinsic chain weight For two band chains

Depending on the chain width

With frame stays RV

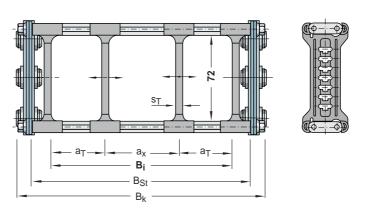
Weight of the chain bands: 12 kg/m (excluding stays)

Divider system for stay variant "RV"

You yourself or our technical team can design an appropriate divider system based on your information regarding the contents of the cable carriers.

In the standard version, the divider system is attached to each frame stay.

Divider system **TS 0** Without height dividers

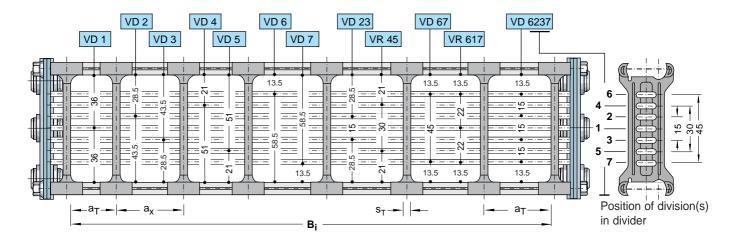

 $s_T = 6 \text{ mm}$

 $a_{T min} = 13 mm$ $a_{x min} = 16 mm$

 $n_{T min} = 2$

Please indicate the number of dividers per cross section n_{T} .

Example for ordering: Divider system TS 0/n_T 2


Dividers can be moved in the carrier cross section!

Divider system TS 1 with continuous height division

Height division: Aluminium-profile 9 x 2 mm Aluminium-profile 11 x 4 mm Recommended variants: VD 1, VD 2, VD 3, VD 4 and VD 45

6 mm S_T 13 mm

 $a_{T\,min}$ = 16 mm $a_{x \min}$

 $n_{T \min} = 2$

Dividers can be moved in the cross section!

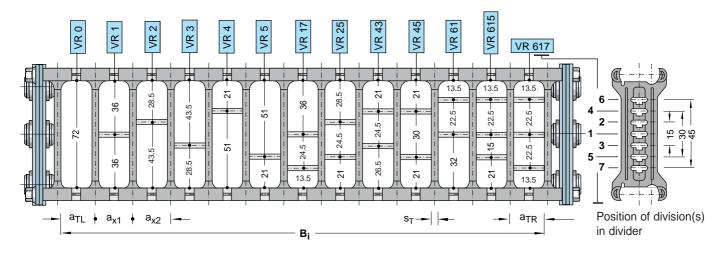
Please indicate variants for height division and number of stays per cross section n_T.

Example for Ordering: Divider system TS - 1 VD45/nT4

Divider system TS 2 with grid division (1 mm grid)

Height division:

Aluminium profile 11 x 4 mm


Recommended variants:

VR 0, VR 1, VR 2, VR 3, VR 5 and VR 45

Dividers fixed by height division.

Grid can be moved in the carrier cross section.

Division variants with clearance height 18.5 mm can be sub-divided.

When ordering, please indicate the chambers (from left to right), divider variants and the installation intervals a_T and a_x.

Example for ordering: Divider system TS 2 - K(Chamber) 1 - VR 0 / 50 mm

K 2 - VR 25 / 60 mm K 3 - VR 1 / 60 mm

K 4 - VR 0 / 90 mm

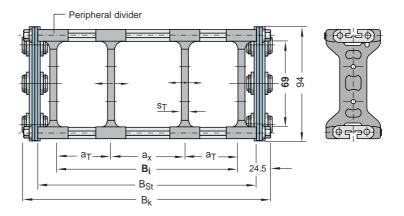
K 5 - VR 1 / 60 mm

K 6 - VR 0 / 50 mm

6 mm S_T

= 13 mm

= 20 mm (with height division) $a_{x \min}$


= 16 mm (for VR 0) $a_{x \min}$

= 2 n_{T min}

Stay variant "RM" Frame stay – solid design

Aluminium profile bars, double bolted on the inside and outside

Calculation of chain width:

$$B_k = B_i + 49 \text{ mm}$$

Calculation of stay width:

$$B_{St} = B_i + 25 \text{ mm}$$

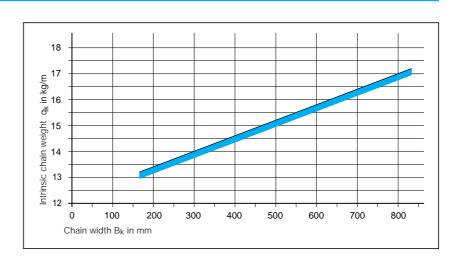
 $B_{k min} = 200 mm$

 $B_{k \text{ max}} = 800 \text{ mm}$

= 5 mm

 $a_{T min} = 17.5 mm$

 $a_{x min} = 20 mm$

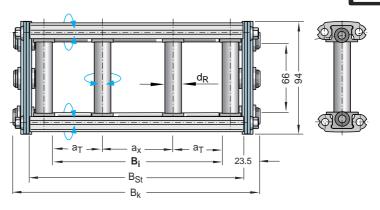

Standard dividers are movable.

Please state the number of dividers.

Intrinsic chain weight For two band chains

Depending on the chain width

With frame stays RM



Stay variant "RMR" Frame stay with plastic roller system

Aluminium profiles double bolted on the inside and outside.

Specially developed for applications using hoses with soft sheaths.

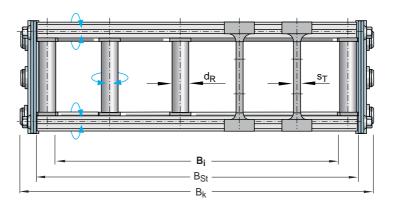
For the highest specifications - the solution which offers the most protection and support to the cables.

Calculation of chain width:

$$B_k = B_i + 47 \text{ mm}$$

 $B_{k \text{ max}} = 800 \text{ mm}$

 $B_{k min} = 200 mm$

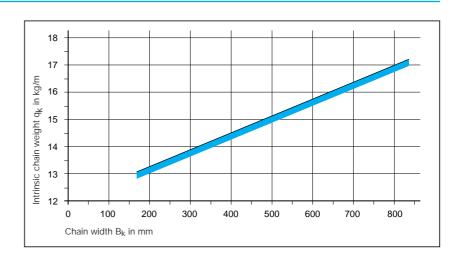

 $d_R = 10 \text{ mm}$

 $a_{T min} = 11.5 mm$

$$a_{x \min} = 37 \text{ mm}$$

Calculation of stay width:

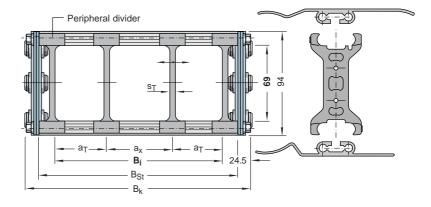
$$B_{St} = B_i + 24 \text{ mm}$$



The cross-sections of stay variant RMR can be subdivided using movable dividers of stay variant RM ($s_T = 4 \text{ mm}$).

Please indicate the number of dividers per cross-section.

Intrinsic chain weight
For two band chains
Depending on the chain width


With frame stays RMR

Stay variant "RMD" Frame stay - Cover system **Enclosed cable carrier**

Aluminium profile bars, double bolted on the inside and outside

Calculation of chain width:

$$B_k = B_i + 49 \text{ mm}$$

Calculation of stay width:

$$B_{St} = B_i + 25 \text{ mm}$$

 $B_{k min} = 150 mm$

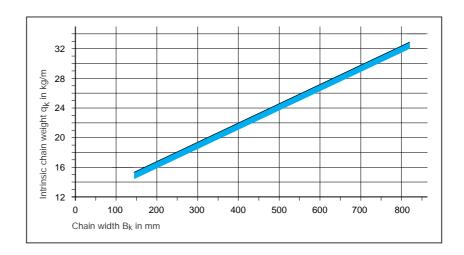
 $B_{k \text{ max}} = 800 \text{ mm}$

 $KR_{min} = 240 \text{ mm}$

= 5 mm s_T

 $a_{T min} = 17.5 mm$

 $a_{x min} = 20 mm$


Standard dividers are movable.

Please indicate the number of dividers per cross section

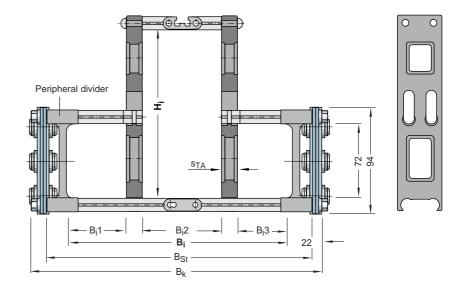
Intrinsic chain weight For two band chains

Depending on the chain width

With frame stays RMR

Stay variant "RMA" Mounting frame stay

for cables with large diameters


Stay variant RMA is used to help guide cables with particularly large diameters within the cable carrier.

The mounting frame stay can be fitted **inside** or **outside** in the bend radius according to preference.

Profile bars: made of Aluminium alloy

Dividers: made of plastic

The cable must be lying on the chain bands and not on the dividers.

Fitted to the inside -

note minimum KR:

 $H_i = 130 \text{ mm}$ - $KR_{min} = 200 \text{ mm}$ $H_i = 160 \text{ mm}$ - $KR_{min} = 260 \text{ mm}$

 $H_i = 200 \text{ mm}$ - $KR_{min} = 300 \text{ mm}$

Fitted to the outside -

Consider the operating and installation height:

The cable must be lying on the chain bands and not on the dividers.

Because of the design parameters which need to be considered we would ask that you consult our technical advisors!

Calculation of chain width:

 $B_k = B_i + 44 \text{ mm}$

Calculation of stay width:

 $B_{St} = B_i + 20 \text{ mm}$

 $B_{kmin} = 200 \text{ mm}$

 $B_{kmax} = 600 \text{ mm}$

 $B_i 1_{min} = 24 \text{ mm}$

 $B_{i}2_{min} = 128 \text{ mm}$

 $B_i 3_{min} = 24 \text{ mm}$

 $s_{TA} = 15 \text{ mm}$

Intrinsic chain weight

For two band chains

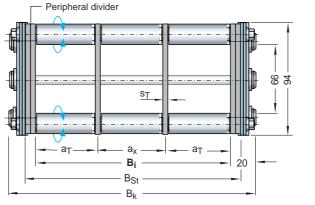
Depending on the chain width

With mounting frame stays RMA

Weight of the chain bands: 12 kg/m

(excluding stays)

Stay variant "RR" Frame stay – tube design


for short to medium travel lengths and low travel speeds

 L_{smax} : 12 m v_{max} : 1 m/s

Please consult our technical staff in marginal

Fixed dividers are available to separate cables/hoses in the carrier cross section.

Please indicate the number of dividers and the distance between them.

Calculation of chain width:

$$B_k = B_i + 40 \text{ mm}$$

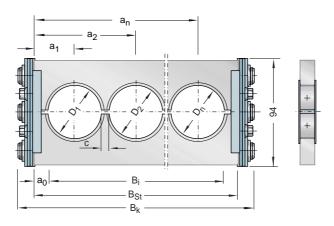
Calculation of stay width:

$$B_{St} = B_i + 16 \text{ mm}$$

 $B_{k min} = 200 mm$

 $B_{k max} = 600 mm$

 $s_T = 4 \text{ mm}$


 $a_{T min} = 30 mm$

 $a_{x min} = 30 mm$

Stay variant "LG" Hole stay – split design

Custom manufacture of hole pattern in accordance with your specifications!

Hole stays are available in an unsplit

Calculation of chain width:

$$B_k = \Sigma D + \Sigma c + 48 \text{ mm}$$

Calculation of stay width:

$$B_{St} = \Sigma D + \Sigma c + 22 \text{ mm}$$

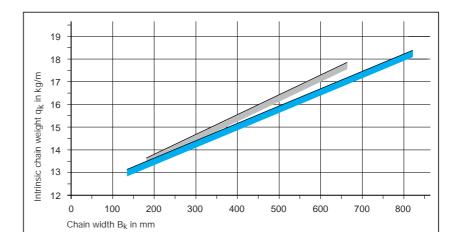
$$B_i = B_{St} - 2 a_0$$

 $D_{max} = 74 \text{ mm}$

 $a_{0 \, \text{min}} = 11 \, \text{mm}$

 $c_{min} = 4 \text{ mm}$

 $B_{k \min} = 130 \text{ mm}$


 $B_{k max} = 800 mm$

Intrinsic chain weight

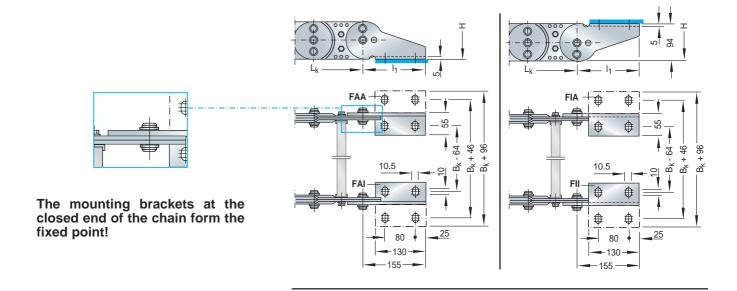
For two band chains

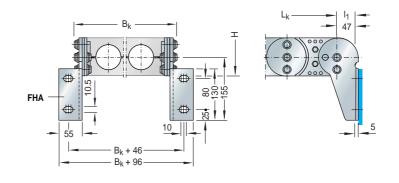
design.

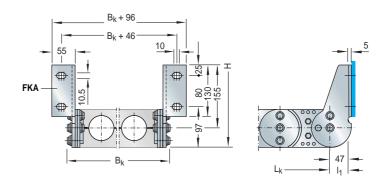
Depending on the chain width

frame stays – tube design (excluding height division)

hole stays, holes account for 50 % of area

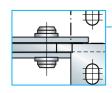



Type S 1250 Connection dimensions

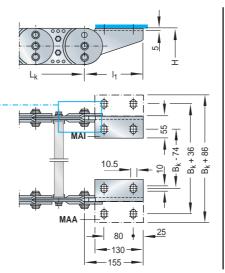

The connection variants at the fixed point and at the driver can be combined and subsequently changed if required.

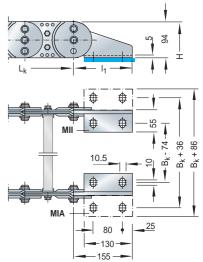
Please indicate required connection variants in accordance with the ordering key (next page).

Fixed point connection



Type S 1250


Connection dimensions


(continued)

The mounting brackets at the forked end of the chain form the driver!

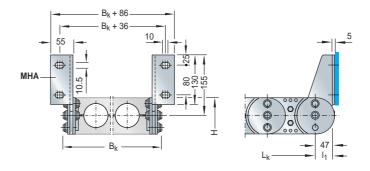
Driver connection

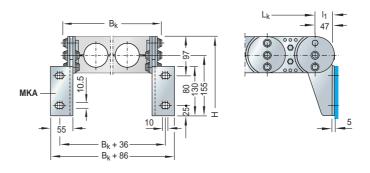
Ordering key for the connector:

X.X.X

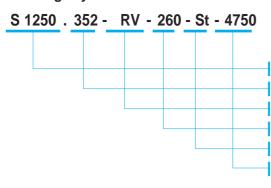
F - fixed-point

Connection point


M - driver


Connection type

- A bolts facing outward (standard)
- l bolts facing inward (towards bend radius)
- H mounting brackets rotated through 90° to the outside
- K mounting brackets rotated through 90° to the inside (towards bend radius)


Connection surface

- connection surface inside (< B_k)
- A connection surface outside $(> B_k)$

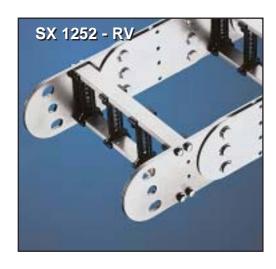
Ordering key for cable carrier:

Example:

Cable carrier type S 1250, stay width $B_{\mbox{\scriptsize St}}$ 352 mm, frame stay RV (reinforced design), bend radius KR 260 mm, steel – zinc-plated, Chain length L_k 4750 mm.

Type

Stay width BSt in mm


Stay variant

Bend radius KR in mm

Chain band material

Chain length L_k in mm (excluding connection)

Stahl verzinkt Rost frei

Cable carriers
Type S 1252
Type SX 1252

Type S 1252: Cable carrier made of high grade steel with

straight chain links

Type SX 1252: Same design,

made of rust and acid resistant steel

Profile:

Stay variants: Frame stay RS

Frame stay RV
Frame stay RM
Frame stay RMR
Frame stay RMA
Frame stay RR
Hole stay LG

Materials:

Chain bands and mounting brackets

S 1252 Steel - zinc-plated

SX 1252 Steel - rust and acid resistant

→ see design guidelines

Stays

max.

Stay variant RS
Stay variant RV
Aluminium alloy
Stay variant RM
Aluminium alloy
Stay variant RMR
Aluminium alloy

with plastic roller system

Stay variant RMA Aluminium alloy

Stay variant RR Steel - zinc-plated for Type S 1252

Plastic

Steel - rust and acid resistant,

for Type SX 1252

Dividers/end pieces on frame stays

Stay variant LG Aluminium alloy

Chain pitch: 125 mm

Clearance height h_i: 72 mm for stay variant RS

72 mm for stay variant RV
69 mm for stay variant RM
66 mm for stay variant RMR
200 mm for stay variant RMA
66 mm for stay variant RR

66 mm for stay variant RR

Hole diameter: 110 mm for stay variant LG

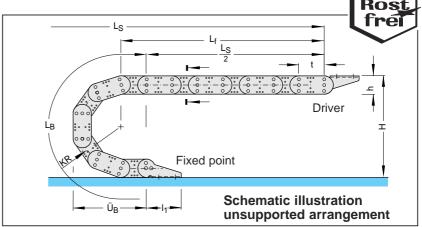
Chain width: customer-specific

the desired width for every individual

application

Bend radii: 13 standard bend radii

Intermediate radii upon request.



Type S 1252 Type SX 1252

Cable Carrier design

Chain pitch t = 125 mmHeight $h_G = 94 \text{ mm}$ Connection height $H_{min} = 2 \text{ KR} + 94 \text{ mm}$ Connection length $I_1 = 155/47 \text{ mm}$ (see connection dimensions)

Variable sizes (depending on the bend radius)

Dimensions in mm

Bend radius	145	200	220	260	300	340	380	420	460	500	540	600	700
Loop length L _B	955	1128	1191	1317	1442	1568	1694	1820	1945	2071	2196	2385	2700
Loop overhang Ü _B	442	497	517	557	597	637	677	717	757	797	837	897	997
Height H _{min}	384	494	534	614	694	774	854	934	1014	1094	1174	1294	1494

The connection height of the chain should be 47 mm higher than height H_{min} !

Calculation of chain length:

$$L_k \approx \frac{L_S}{2} + L_B$$

Rounded to pitch 125 mm

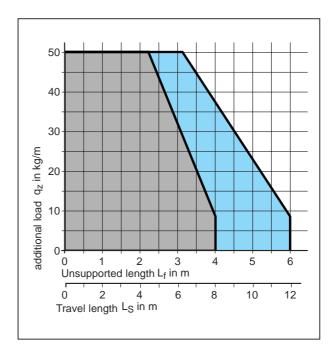
Installation height

(required clearance height):

$$H_Z = H + Z$$

Pre-tension z ≈ 10 mm/m chain length

Load diagram


Unsupported length L_f and travel length L_s without support Depending on the additional load (see design guidelines)

An intrinsic chain weight of **13 kg/m** was used as a basis on the load diagram.

With a larger intrinsic weight (for example with stay variant RMD) the permissible additional load is reduced by the amount of the difference.

Explanation of load diagram:

For circular operations KR/RKR combinations are possible. Please contact us for details!

A flat and level surface is required for the carrier system to be installed properly.

If necessary, a support tray should be installed (see system components).

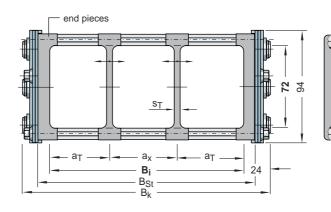
Type S 1252 Type SX1252

Chain cross sections

in accordance with section in schematic illustration

Stays mounted on every 2nd chain link!

Stay variant "RS 1" Frame stay with detachable profile bar


for short to medium travel lengths and low travel speeds

 L_{smax} : 8.5 m v_{max} : 1 m/s

In marginal cases, please consult our technical staff.

Standard dividers are movable.

Please indicate the number of dividers per cross section.

Calculation of chain width:

$$B_k = B_i + 48 \text{ mm}$$

Calculation of stay width:

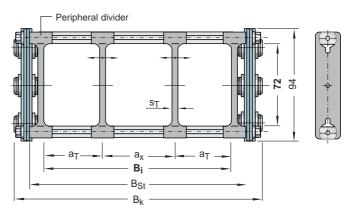
$$B_{St} = B_i + 24 \text{ mm}$$

 $B_{k \text{ min}} = 200 \text{ mm}$

 $B_{k \text{ max}} = 400 \text{ mm}$

 $s_T = 5 \text{ mm}$

 $a_{T min} = 12.5 mm$


 $a_{x min} = 15 mm$

Stay variant "RS 2" Frame stay with bolted profile bars

for short to medium travel lengths and low travel speeds

 L_{smax} : 12 m v_{max} : 1.5 m/s

In marginal cases, please consult our technical staff.

Standard dividers are movable.

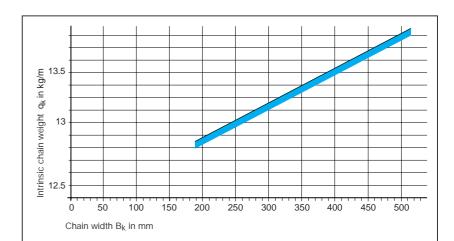
Please indicate the number of dividers per cross section.

Calculation of chain width:

$$B_k = B_i + 44 \text{ mm}$$

Calculation of stay width:

$$B_{St} = B_i + 20 \text{ mm}$$


 $B_{k \text{ min}} = 200 \text{ mm}$ $B_{k \text{ max}} = 500 \text{ mm}$ $S_{T} = 5 \text{ mm}$

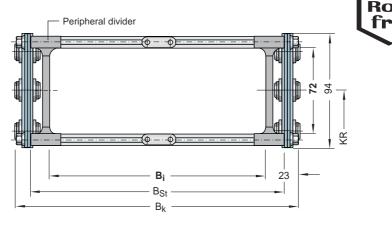
 $a_{T min} = 12.5 mm$

 $a_{x min} = 15 mm$

Intrinsic chain weight for two band chains

Depending on the chain width

with frame stays RS 1 / RS 2


Weight of the chain bands: 12 kg/m

(excluding stays)

Stahl verzinkt

Stay variant "RV" Frame stay – reinforced design

Aluminum profile bars, double-bolted on inside and outside

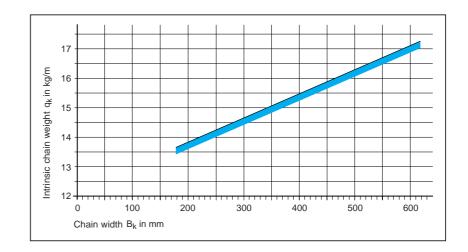
Calculation of chain width:

$$B_k = B_i + 46 \text{ mm}$$

Calculation of stay width:

$$B_{St} = B_i + 22 \text{ mm}$$

Intrinsic chain weight


 $B_{k min} = 200 mm$

 $B_{k \text{ max}} = 600 \text{ mm}$

For two band chains
Depending on the chain width

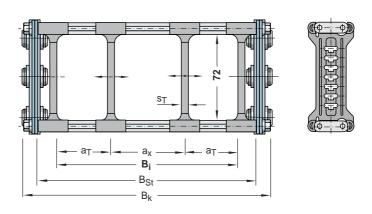
With frame stays RV

Weight of chain bands: 12 kg/m (excluding stays)

Divider system for stay variant "RV"

You yourself or our technical team can design an appropriate divider system based on your information regarding the contents of the cable carriers.

In the standard version, the divider system is attached to each frame stay.


Divider system **TS 0** Without height dividers

 $s_T = 6 \text{ mm}$ $a_{T \text{ min}} = 13 \text{ mm}$ $a_{x \text{ min}} = 16 \text{ mm}$

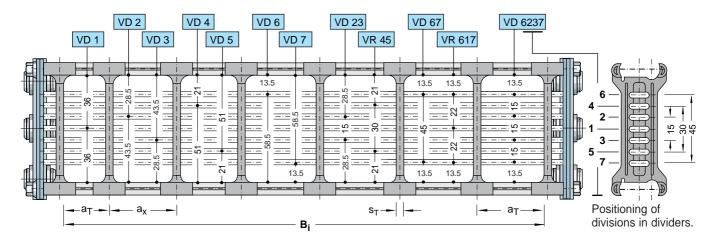
 $n_{T min} = 2$

Please indicate the number of dividers per cross section n_{T} .

Example for ordering: Divider system TS 0/n_T 2

Technical Data -

Series 1200



Divider System TS 1 With continuous height division

Height division:

Aluminium profile 11 x 4 mm

Recommended variants: VD 1, VD 2, VD 3, VD 4 and VD 45

6 mm ST 13 mm a_{T min} = 16 mm a_{x min}

 $n_{T \min} = 2$

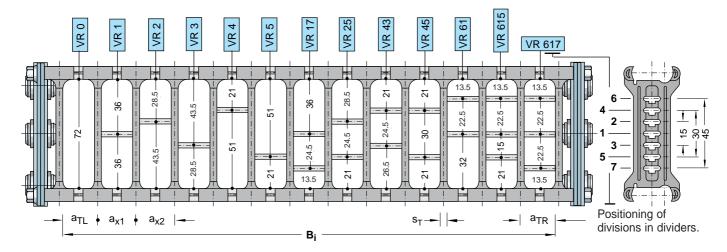
Dividers can be moved in cross section!

Please indicate variants in height division and number of stays per cross section nT.

Example for ordering: divider system TS 1 - VD 45/nT 4

Divider System TS 2 With grid division (1 mm grid)

Height division:


Aluminium profile 11 x 4 mm

Recommended variants:

VR 0, VR 1, VR 2, VR 3, VR 5 and VR 45

Dividers fixed by height division. Grid can be moved in chain cross section.

Division variants with clearance height 18.5 mm can be sub-divided.

When ordering, please indicate the chambers (from left to right), divider variants and installation intervals a_T and a_x.

Example for ordering:

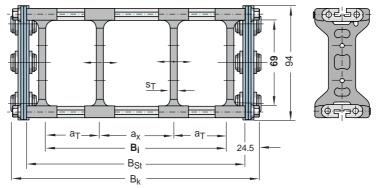
divider system TS 2 K (chamber) - 1 - VR 0 / 50 mm

K 2 - VR 25 / 60 mm K 3 - VR 1 / 60 mm K 4 - VR 0 / 90 mm

K 5 - VR 1 / 60 mm K 6 - VR 0 / 50 mm

 s_T 6 mm $a_{T min} = 13 mm$

= 20 mm (with height division) $a_{x \min}$


= 16 mm (with VR 0) $a_{x min}$

n_{T min} = 2

Frame stay "RM"
Frame stay - solid design

Aluminium profile bars, double bolted on the inside and outside.

Calculation of chain width:

$$B_k = B_i + 49 \text{ mm}$$

Calculation of stay width:

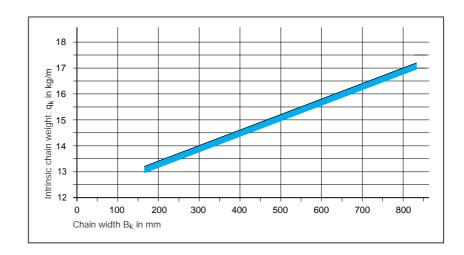
$$B_{St} = B_i + 25 \text{ mm}$$

$$B_{k min} = 200 mm$$

$$B_{k \text{ max}} = 800 \text{ mm}$$

$$s_T = 5 \text{ mm}$$

$$a_{T min} = 17.5 mm$$

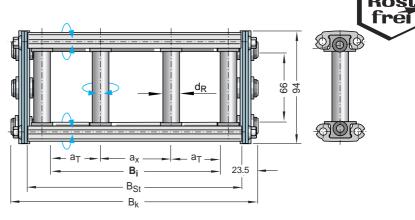

$$a_{x min} = 20 mm$$

Standard dividers are movable.

Please indicate the number of dividers per cross section.

Intrinsic chain weight for two band chains Depending on the chain width

With frame stays RM


Stahl verzinkt

Stay variant "RMR" Frame stay with plastic roller system

Aluminium profiles double bolted on the inside and outside.

Specially developed for applications using hoses with soft sheaths.

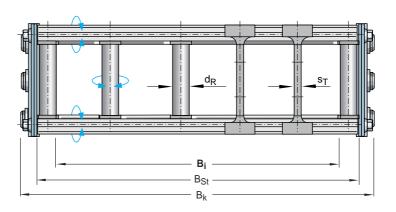
For the highest specifications – the solution which offers the most protection and support to the cables.

Calculation of chain width:

$$B_k = B_i + 47 \text{ mm}$$

Calculation of stay width:

$$B_{St} = B_i + 24 \text{ mm}$$

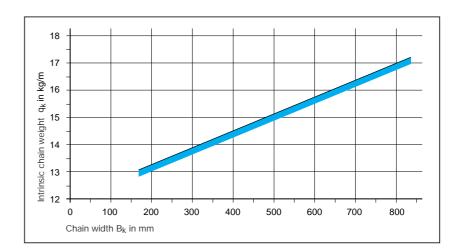

 $B_{k min} = 200 mm$

 $B_{k \text{ max}} = 800 \text{ mm}$

 $d_R = 10 \text{ mm}$

 $a_{T min} = 11.5 mm$

 $a_{x min} = 37 mm$



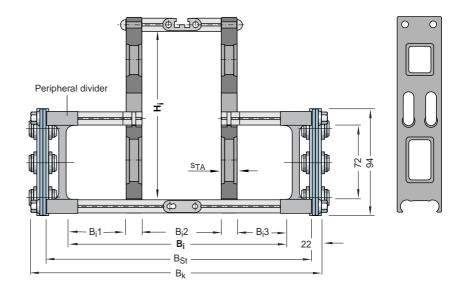
The cross-sections of stay variant RMR can be subdivided using movable dividers of stay variant RM ($S_T = 4 \text{ mm}$).

Please indicate the number of dividers per cross-section.

Intrinsic Carrier Weight for two band chains depending on the chain width

With frame stays RMR

Stay variant "RMA" Mounting frame stay


for cables with large diameters

Stay variant RMA is used to help guide cables with particularly large diameters within the cable carrier.

The mounting frame stay can be fitted inside or outside in the bend radius according to preference.

Profile bars: made of Aluminium alloy Dividers: made of plastic

The cable must be lying on the chain bands and not on the dividers.

Fitted to the inside -

note minimum KR:

 $H_i = 130 \text{ mm}$ - $KR_{min} = 200 \text{ mm}$ $H_i = 160 \text{ mm}$ - $KR_{min} = 260 \text{ mm}$

 $H_i = 200 \text{ mm}$ - $KR_{min} = 300 \text{ mm}$

Fitted to the outside -

Consider the operating and installation height:

The cable must be lying on the chain bands and not on the dividers.

Because of the design parameters which need to be considered we would ask that you consult our technical advisors!

Calculation of chain width:

 $B_k = B_i + 44 \text{ mm}$

Calculation of stay width:

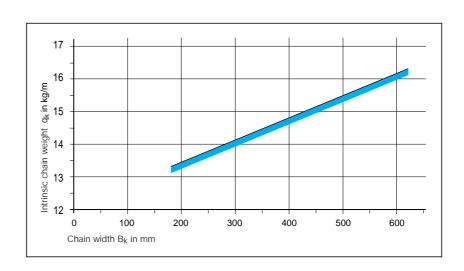
 $B_{St} = B_i + 20 \text{ mm}$

 $B_{kmin} = 200 \text{ mm}$

 $B_{kmax} = 600 \text{ mm}$

 $B_i 1_{min} =$ 24 mm

 $B_i 2_{min} = 128 \text{ mm}$


 $B_i 3_{min} =$ 24 mm

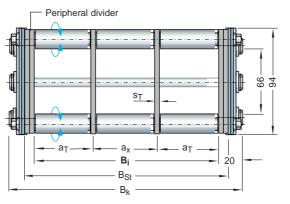
15 mm S_{TA}

Intrinsic Carrier Weight for two band chains

depending on the chain width

With mounting frame stay RMA

Stay variant "RR" Frame stay - tube design


for short to medium travel lengths and low travel speeds

L_{smax}: 12 m v_{max}: 1 m/s

Please contsult our technical staff in marginal cases!

Fixed dividers are available to separate cables/hoses in the carrier cross section.

Please indicate the number of dividers, and the distances between them.

Calculation of chain width:

$$B_k = B_i + 40 \text{ mm}$$

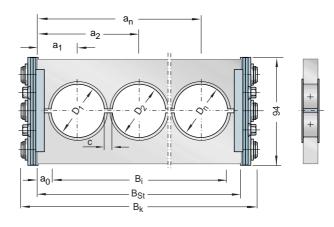
Calculation of stay width:

$$B_{St} = B_i + 16 \text{ mm}$$

$$B_{k \text{ min}} = 200 \text{ mm}$$

$$B_{k \text{ max}} = 600 \text{ mm}$$

$$s_T = 4 \text{ mm}$$


$$a_{T min} = 30 mm$$

$$a_{x min} = 30 mm$$

Stay variant "LG" Hole stay - split design

Custom manufacture of hole pattern in accordance with your specifications!

Hole stays are available in an unsplit

Calculation of chain width:

$$B_k = \Sigma D + \Sigma c + 48 \text{ mm}$$

Calculation of stay width:

$$B_{St} = \Sigma D + \Sigma c + 22 \text{ mm}$$

$$B_i = B_{St} - 2 a_0$$

$$D_{max} = 74 \text{ mm}$$

$$a_{0 \, min} = 11 \, mm$$

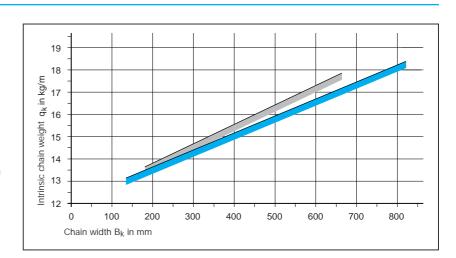
$$c_{min} = 4 \text{ mm}$$

$$B_{k \min} = 130 \text{ mm}$$

$$B_{k max} = 800 mm$$

Intrinsic chain weight

For two band chains

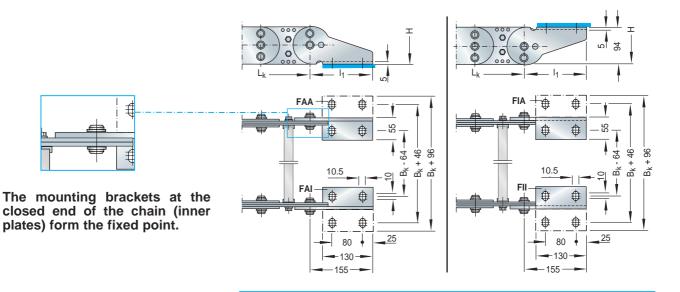

design.

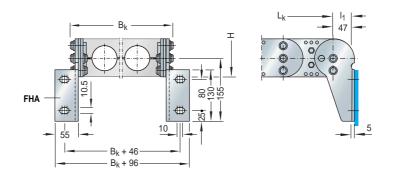
Depending on the chain width

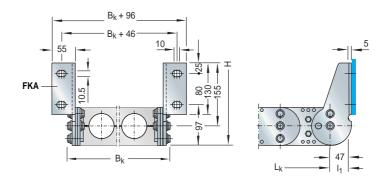
frame stays - tube design (excluding height division)

hole stays, holes account for 50 % of area

Weight of chain bands per 12 kg/m (excluding stays)

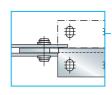



Type S 1252
Type SX 1252
Connection dimensions

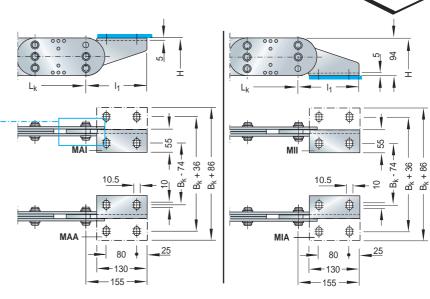

The connection variants at the fixed point and at the driver can be combined und subsequently changed if required.

Please indicate required connection variants in accordance with ordering key (next page).

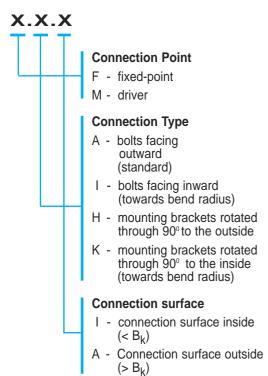
Fixed point connection

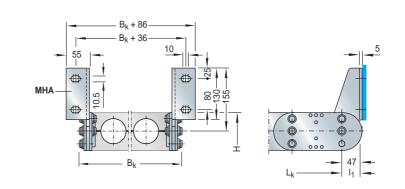


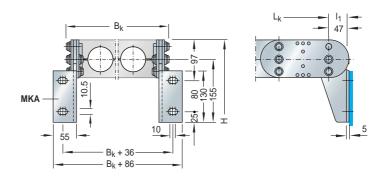
Stahl verzinkt


Type S 1252 Type SX 1252 **Connection dimensions**

(continued)




The mounting brackets at the forked end of the chain (outer plates) form the driver!


Driver connection

Ordering key for the connection:

Ordering key for cable carrier:

SX 1252.380 - RR - 300 - ER 2 - 4500

Example:

Cable carrier type SX1252, stay width $\rm B_{St}$ 380 mm - frame stay RR (reinforced design), with bend radius KR 300 mm, made of high grade steel ER2, chain length $\rm L_k$ 4500 mm.

Type

Stay width BSt in mm

Stay variant

Bend radius KR in mm

Chain band material

Chain length L_k in mm (excluding connection)

Cable Carriers Type S 1800

Profile:

Cable Carrier made of high-quality zinc-plated steel with offset chain links.

Stay variants: Frame stay RM

Frame stay RMD
Frame stay RR
Hole stay LG

Materials:

Chain Bands and Mounting Brackets

Steel, zinc-plated

→ Refer to design guidelines

Stays

Stay variant RM Aluminum alloy
Stay variant RMD Aluminum alloy
Stay variant LG Aluminum alloy

Dividers/end pieces on frame stays

Plastic

Stay variant RR Steel - zinc-plated

Chain pitch: 180 mm

Clearance height h_i: 109 mm on stay variant RM

104 mm on stay variant RMD104 mm on stay variant RR

max.

hole diameter: 110 mm on stay variant LG

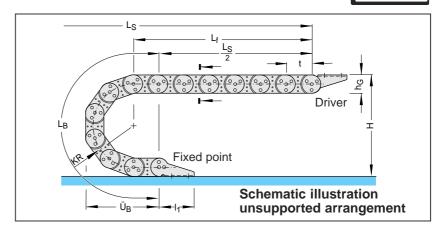
Chain width: customer-specific

the desired width for every individual

application

Bend radii: 10 standard bend radii

(intermediate radii upon request).



Type S 1800 Cable Carrier design

Chain pitch t = 180 mmHeight $h_G = 140 \text{ mm}$ Connection height $H_{min} = 2 \text{ KR} + 140 \text{ mm}$

Connection length $I_1 = 210/70 \text{ mm}$

(see connection dimensions)

Variable sizes (depending on bend radius)

Dimensions in mm

Bend radius	265	320	375	435	490	605	720	890	1175	1405
Loop length L _B	1552	1725	1898	2087	2259	2620	2982	3516	4411	5164
Loop overhang Ü _B	695	750	805	865	920	1035	1150	1320	1605	1835
Height H _{min}	670	780	890	1010	1120	1350	1580	1920	2490	2950

The connection height of the chain should be 70 mm higher than height H_{min} !

Calculation of chain length:

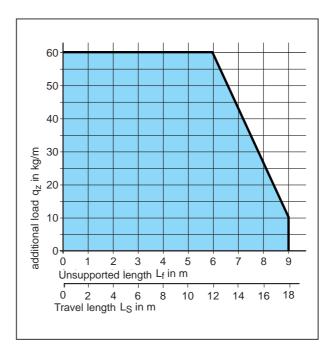
$$L_k \approx \frac{L_S}{2} + L_B$$

Rounded to pitch 180 mm

Installation height

(required clearance height):

$$H_Z = H + Z$$


pre-tension z ≈ 10 mm/m chain length

Load diagram

Unsupported length L_f and and travel length L_s without support Depending on the additional load (see design guidelines)

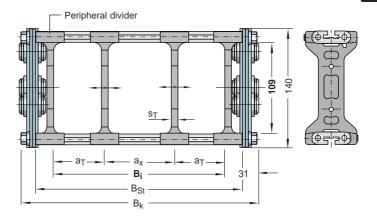
An intrinsic chain weight of **26 kg/m** was used as a basis on the load diagram.

With a larger intrinsic weight (for example with stay variant RMD) the permissible additional load is reduced by the amount of the difference.

For circular operations KR/RKR combinations are possible. Please contact us for details!

A flat and level surface is required for the carrier system to be installed properly.

If necessary, a support tray should be installed (see system components).



Type S 1800 Chain cross sections

Stay mounted on every 2nd chain link

Stay variant "RM 1" Frame stay – Solid design

Aluminium profile bars double bolted both inside and outside

Calculation of chain width:

$$B_k = B_i + 62 \text{ mm}$$

Calculation of stay width:

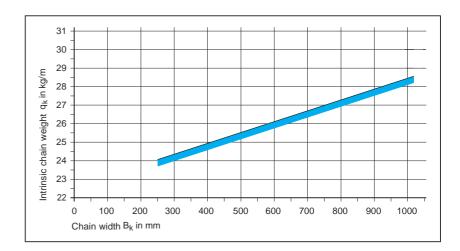
$$B_{St} = B_i + 33 \text{ mm}$$

 $B_{k min} = 250 mm$

 $B_{k \text{ max}} = 1000 \text{ mm}$

 $s_T = 7.5 \text{ mm}$

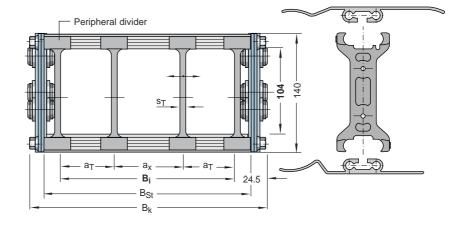
 $a_{T min} = 21.5 mm$


 $a_{x min} = 25 mm$

Standard dividers are moveable.

Please state the numer of dividers.

Intrinsic chain weight for two band chains Depending on the chain width


With frame stays RM

Stay variant "RMD" Frame stay - with cover Enclosed cabe carrier system

Aluminium profiles double bolted on the inside and outside

Calculation of chain width:

$$B_k = B_i + 49 \text{ mm}$$

 $B_{k \text{ max}} = 1000 \text{ mm}$ $KR_{min} = 320 \text{ mm}$ $S_{T} = 6 \text{ mm}$

 $B_{k min} =$

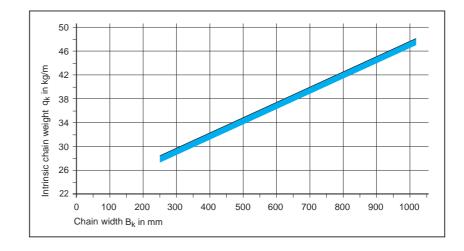
250 mm

Calculation of stay width:

$$B_{St} = B_i + 24 \text{ mm}$$

$$s_T = 6 \text{ mm}$$
 $a_{T \text{ min}} = 13 \text{ mm}$

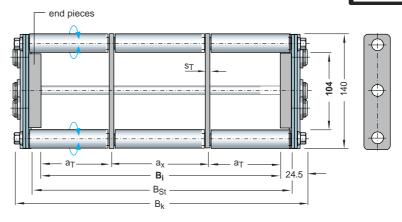
 $a_{x min} = 16 mm$


Standard dividers are moveable.

Please indicate the number of dividers per cross-section.

Intrinsic chain weight For two band chains

Depending on the chain width


With frame stays RMD

Stay variant "RR" Frame stay - Tube design

Fixed dividers are available to separate the cables/hoses in the carrier cross section.

Please indicate the number of dividers and the distances between them.

Calculation of chain width:

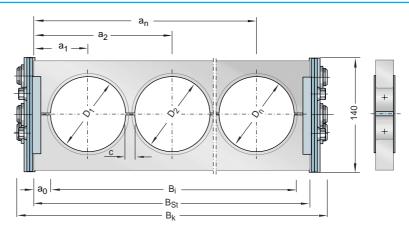
$$B_k = B_i + 49 \text{ mm}$$

Calculation of stay width:

$$B_{St} = B_i + 20 \text{ mm}$$

 $B_{k min} = 250 mm$

 $B_{k \text{ max}} = 800 \text{ mm}$


 $s_T = 4 \text{ mm}$

 $a_{T min} = 45 mm$

 $a_{x min} = 45 mm$

Stay variant "LG" Hole stay – split version

Custom manufacture of hole pattern in accordance with your specifications!

Calculation of chain width:

$$B_k = \Sigma D + \Sigma c + 59 \text{ mm}$$

Calculation of stay width:

$$B_{St} = \Sigma D + \Sigma c + 27 \text{ mm}$$

$$B_i = B_{St} - 2 a_0$$

 $D_{max} = 110 \text{ mm}$

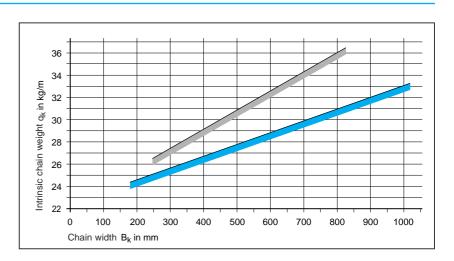
 $a_{0 \, \text{min}} = 13.5 \, \text{mm}$

 $c_{min} = 4 \text{ mm}$

 $B_{k \min} = 180 \text{ mm}$

 $B_{k max} = 1000 mm$

Intrinsic chain weight For two band chains

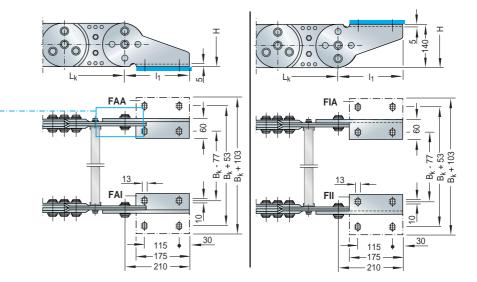

design.

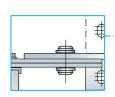
Depending on the chain width

frame stays – tube design (excluding height division)

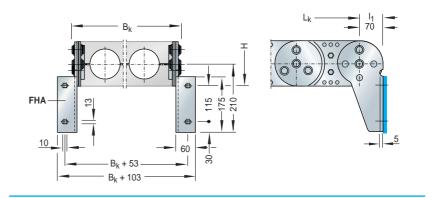
Hole stays are available in an unsplit

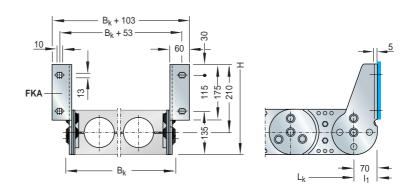
hole stays, holes account for 50 % of area



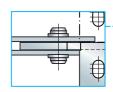

Type S 1800 Connection dimensions

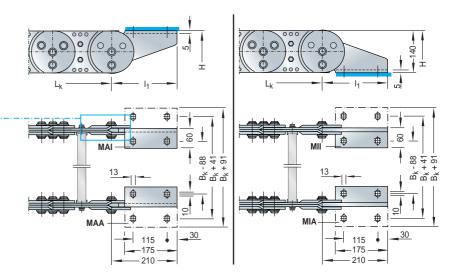
The connection variants at the fixed point and at the driver can be combined und subsequently changed if required.


Please indicate required connection variants in accordance with the ordering key (next page).

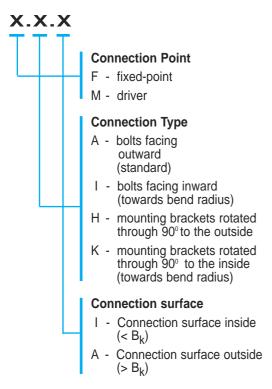

Fixed point connection

The mounting brackets at the closed end of the chain form the fixed point.




Type S 1800 Connection dimensions

(continued)

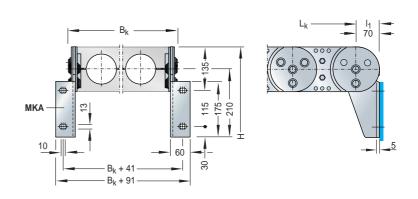


The mounting brackets at the forked end of the chain form the driver!

Driver connection

Ordering key for the connection:

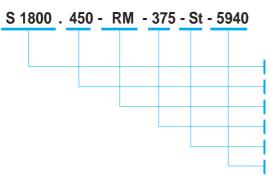
MHA


B_k + 91

B_k + 41

B_k

B_k + 10


B_k

Ordering key for cable carrier:

Example:

Cable carrier type S 1800, stay width, $\rm B_{St}$ 450 mm - Frame stay RM, with bend radius KR 375 mm, chain length $\rm L_k$ 5940 mm.

Type

Stay width BSt in mm

Stay variant

Bend radius KR in mm

Chain band material

Chain length L_k in mm (excluding connector)

Stah verzinkt

Cable Carriers Type S 1802 Type SX 1802

Profile:

Type S 1802: Cable Carrier made of high-quality

zinc-plated steel with straight chain links.

Type SX 1802: same design,

made from rust and acid-resistant steel

Stay variants: Frame stay RM

> Frame stay RR Hole stay LG

Materials:

Chain Bands and Mounting Brackets

S 1802 steel, zinc-plated

SX 1802 steel, rust and acid resistant

→ Refer to design guidelines

Stays

aluminum alloy Stay variant RM Stay variant LG aluminum alloy

Dividers/end pieces

plastic for frame stays

Stay variant RR **steel**, zinc-plated for type S 1802

Steel, rust and acid resistant

for type SX 1802

Chain pitch: 180 mm

Clearance height hi: 109 mm on stay variant RM

104 mm on stay variant RR

Max.

Hole diameter: 110 mm on stay variant LG

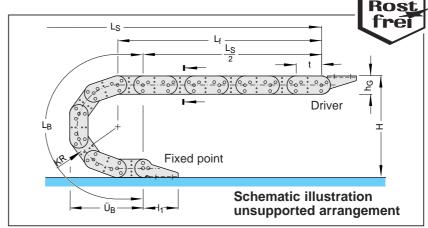
Chain width: customer-specific

the desired width for every individual

application

Bend radii: 9 standard bend radii

(intermediate radii upon request)



Type S 1802 Type SX 1802

Cable Carrier design

Chain pitch t = 180 mmHeight $h_G = 140 \text{ mm}$ Connection height $H_{min} = 2 \text{ KR} + 140 \text{ mm}$ Connection length $I_1 = 210/70 \text{ mm}$ (see connection dimensions)

Variable sizes (depending on the bend radius)

Dimensions in mm

Bend radius	265	320	375	435	490	545	605	720	890
Loop length L _B	1552	1725	1898	2087	2259	2432	2620	2982	3516
Loop overhang Ü _B	695	750	805	865	920	975	1035	1150	1320
Height H _{min}	670	780	890	1010	1120	1224	1350	1580	1920

The connection height of the chain should be 70 mm higher than height H_{min} !

Calculation of chain length:

$$L_k \approx \frac{L_S}{2} + L_B$$

Rounded to pitch 180 mm

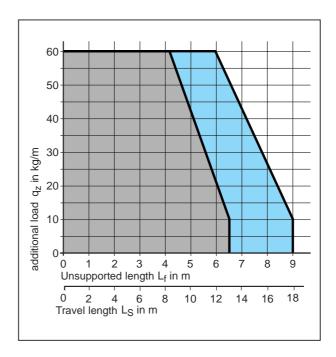
Installation height

(required clearance height):

$$H_Z = H + Z$$

pre-tension $z \approx 10$ mm/m chain length

Load diagram


Unsupported length L_{S} without support Depending on the additional load (see design guidelines)

An intrinsic chain weight of **26 kg/m** was used as a basis on the load diagram.

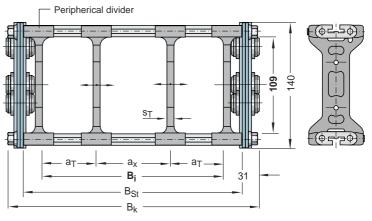
With a larger intrinsic weight (for example with stay variant RMD) the permissible additional load is reduced by the amount of the difference.

Explanation of load diagram:

For circular operations KR/RKR combinations are possible. Please contact us for details!

A flat and level surface is required for the carrier system to be installed properly.

If necessary, a support tray should be installed (see system components).



Type S 1802
Type SX 1802
Chain cross sections

Stay mounted on every 2nd chain link

Stay variant "RM" Frame stay – Solid design

Aluminium profile bars, double bolted on the inside and outside

Calculation of chain width:

$$B_k = B_i + 62 \text{ mm}$$

.

 $B_{k min} = 250 mm$

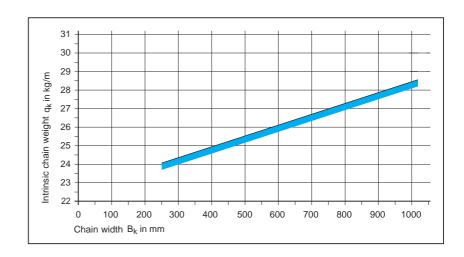
 $B_{k \text{ max}} = 1000 \text{ mm}$

 $s_T = 7.5 \text{ mm}$

 $a_{T min} = 21.5 mm$

 $a_{x min} = 25 mm$

Calculation of stay width:

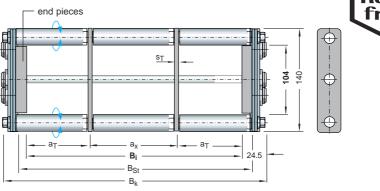

$$B_{St} = B_i + 33 \text{ mm}$$

Standard dividers are movable.

Please state the number of dividers.

Intrinsic chain weight for two band chains
Depending on the chain width

with frame stays RM



Stahl verzinkt

ROST

Stay variant "RR" Frame stay - Tube design

Fixed dividers are available to separate the cables/hoses in the carrier cross section.

Please indicate the number of dividers and the distances between them.

Calculation of chain width:

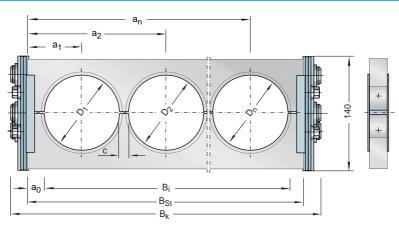
$$B_k = B_i + 49 \text{ mm}$$

Calculation of stay width:

$$B_{St} = B_i + 20 \text{ mm}$$

 $B_{k min} = 250 mm$

 $B_{k \text{ max}} = 800 \text{ mm}$


 $s_T = 4 \text{ mm}$

 $a_{T min} = 45 mm$

 $a_{x min} = 45 mm$

Stay variant "LG" Hole stay – split version

Custom manufacture of hole pattern in accordance with your specifications!

Calculation of chain width:

$$B_k = \Sigma D + \Sigma c + 59 \text{ mm}$$

Calculation of stay width:

$$B_{St} = \Sigma D + \Sigma c + 27 \text{ mm}$$

$$B_i = B_{St} - 2 a_0$$

 $D_{max} = 110 \text{ mm}$

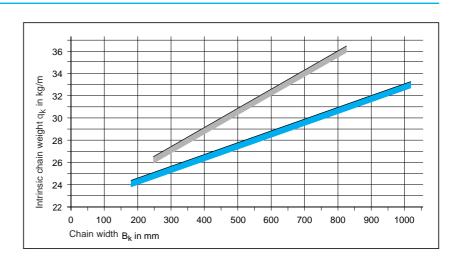
 $a_{0 \, \text{min}} = 13.5 \, \text{mm}$

 $c_{min} = 4 \text{ mm}$

 $B_{k \min} = 180 \text{ mm}$

 $B_{k max} = 1000 mm$

Intrinsic chain weight For two band chains


Depending on the chain width

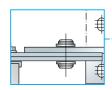
frame stays – tube design (excluding height division)

Hole stays are available in an unsplit

hole stays, holes account for 50 % of area

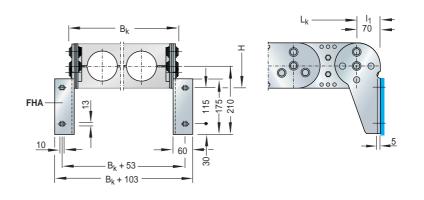
Weight of the chain bands: 22.8 kg/m (excluding stays)

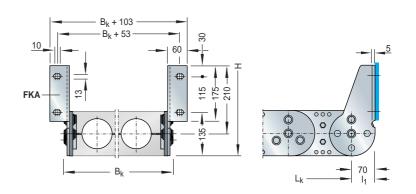
design.



Type S 1802
Type SX 1802
Connection dimensions

The connection variants at the fixed point and at the driver can be combined und subsequently changed if required.


Please indicate the required connection variants in accordance with the ordering key (next page).


Fixed point connection

The mounting brackets at the closed end of the chain (inner plates) form the fixed point!

₩

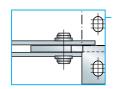
115

175

210

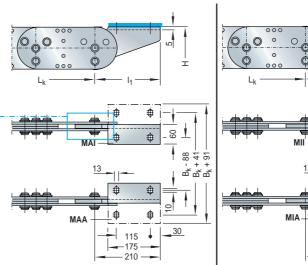
#

9

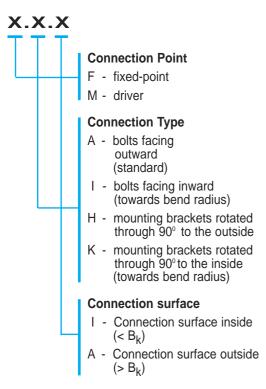

30

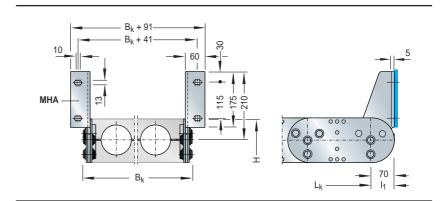
В_к - 88 + 41: 8, + 91:

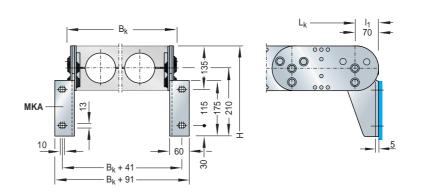
Type S 1802 Type SX 1802


Connection dimensions

(continued)




The mounting brackets at the forked end of the chain (outer plates) form the driver!


Driver connection

Ordering key for the connector:

Ordering key for cable carrier:

SX 1802.524 - LG - 435 - ER 1 - 6840

Example:

Cable carrier type SX 1802, stay width Bst 524 mm, hole stay, split design – (hole pattern as per your specifications), bend radius KR 435 mm, made of stainless steel ER1, Chain length $\rm L_k$ 6840 mm

Type

Stay width B_{St} in mm

Stay variant

Bend radius KR in mm

Chain band material

Chain length Lk in mm (excluding connector)

Cable Carriers
Type S 2500
Type SX 2500

Profile:

Type S 2500: Cable carrier made of high grade steel with straight

chain links

Type SX 2500: Same design

made of rust and acid resistant steel

Stay variants: Hole stay LG (Standard)

Frame stay RR (Special order)

Materials:

Chain Bands and Mounting Brackets

S 2500 Steel - zinc-plated

SX 2500 Steel - rust and acid resistant

→ see design guidelines

Stays

Stay variant LG Aluminium alloy

Chain pitch: 250 mm

Max.

hole diameter: 180 mm on stay variant LG

Chain width: customer-specific

the desired width for every individual

application

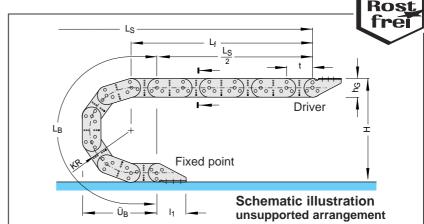
Bend radii: 8 standard bend radii

(intermediate radii upon request)

Stahl verzinkt

Type S 2500 **Type SX 2500 Cable Carrier design**

Chain pitch t = 250 mm= 220 mmHeight h_G


Connection height $H_{min} = 2 KR + 220 mm$

Connection length $I_1 = 300 \text{ mm}$

Variable sizes

depending on the bend radius

Connection height of chain should be 110 mm higher than height H_{min}!

Bend radius	365	445	600	760	920	1075	1235	1395
Loop length L _B	2147	2398	2885	3388	3890	4377	4880	5383
Loop overhang Ü _B	975	1055	1210	1370	1530	1685	1845	2005
Height H _{min}	950	1110	1420	1740	2060	2370	2690	3010

Dimensions in mm

Calculation of chain length:

$$L_k \approx \frac{L_s}{2} + L_B$$

Rounded to pitch 250 mm

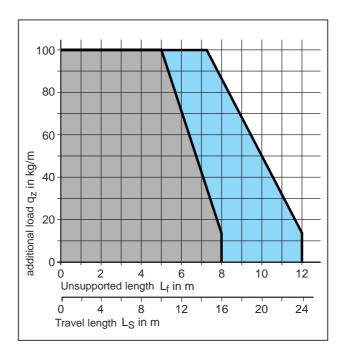
Installation height

(required clearance height):

$$H_Z = H + Z$$

Pre-tension z ≈ 10 mm/m chain length

Load diagram


Unsupported length Lf and travel length L_s without support Depending on the additional load (see design guidelines)

An intrinsic chain weight of 41 kg/m was used as a basis on the load diagram.

With a larger intrinsic weight (for example with stay variant RMD) the permissible additional load is reduced by the amount of the difference.

Explanation of load diagram:

For circular operations KR/RKR combinations are possible. Please contact us for details!

A flat and level surface is required for the carrier system to be installed

If necessary, a support tray should be installed (see system components).

Type S 2500 Type SX 2500

Chain cross sections

In accordance with section in schematic illustration

Stays mounted on every 2nd chain link.

Stay variant "LG" Hole stay - split design +

Custom manufacture of hole pattern in

accordance with your specifications!

Hole stays are available in an unsplit design.

Calculation of chain width:

$$B_k = \Sigma D + \Sigma c + 76 \text{ mm}$$

Calculation of stay width:

50

$$B_{St} = \Sigma D + \Sigma c + 44 \text{ mm}$$

$$B_i = B_{St} - 2 a_0$$

180 mm D_{max}

22 mm $a_{0 \, min} =$

4 mm Cmin

 $B_{kmin} =$ 250 mm

 $B_{k max} = 1200 mm$

Special stays

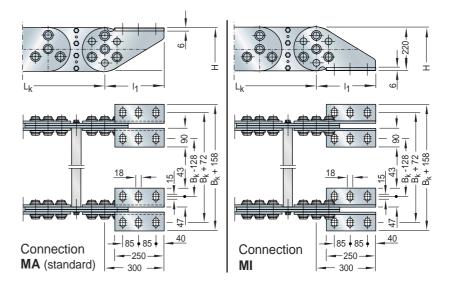
Custom manufacture of stays with regard to design and materials is available based on your specifications.

Intrinsic chain weight For two band chains

Depending on the chain width

hole stays, holes account for 50 % of area

46 Intrinsic chain weight q_k in kg/m 40 38 34 200 600 1200 Chain width Bk in mm

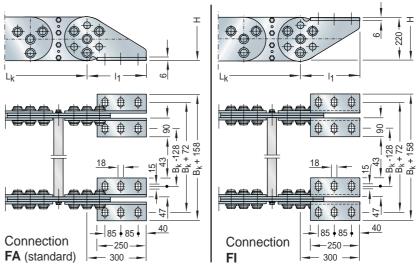


Type S 2500
Type SX 2500
Connection dimensions

The connection variants at the fixed point and at the driver can be combined and subsequently changed if required.

Please state required connection variants in accordance with the ordering key!

Driver connection



The driver and fixed-point connection occurs by attaching double mounting brackets on the inner links.

Ordering key for the connector:

Connection Point F - fixed-point M - driver Connection Type A - bolts facing outward (standard) I - bolts facing inward (towards bend radius)

Fixed-point connection

Ordering key for cable carrier:

Example:

Cable carrier type SX 2500, stay width Bst 850 mm, hole stay – split design – (hole pattern as per your specifications), bend radius KR 760 mm, made of stainless steel ER1, Chain length $\rm L_k$ 9250 mm.

Type Stay width B_{St} in mm Stay variant Bend radius KR in mm Chain band material

Chain length Lk in mm (excluding connection)

Cable Carriers
Type S 3200
Type SX 3200

Profile:

Type S 3200: Cable Carrier made of high-quality zinc-pla-

ted steel with straight chain links.

Typ SX 3200: same design,

made of rust and acid resistant steel

Stay variants: Hole stay LG (standard)

Frame stay RR (special order)

Materials:

Chain Bands and Mounting Brackets

S 3200 steel, zinc-plated

SX 3200 steel - rust and acid resistant

→ Refer to design guidelines

Stays:

Stay variant LG aluminum alloy

Chain pitch: 320 mm

Max.

hole diameter: 220 mm on stay variant LG

Chain width: customer-specific

the desired width for every individual

application

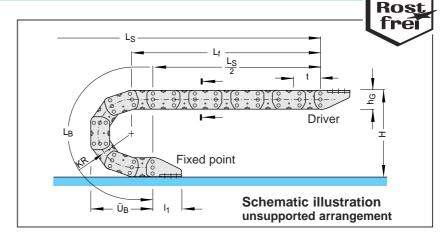
Bend radii: 7 standard bend radii

(intermediate radii upon request)

Stahl verzinkt

Type S 3200 Type SX 3200 Cable Carrier design

Chain pitch t = 320 mmHeight h_G = 300 mm


Connection height $H_{min} = 2 KR + 300 mm$

Connection length $I_1 = 350 \text{ mm}$

Variable sizes

depending on the bend radius

The connection height of the chain should be 150 mm higher than the height H_{min} !

Bend radius	470	670	870	1075	1275	1480	1785
Loop length L _B	2757	3385	4013	4657	5286	5930	6888
Loop overhang Ü _B	1260	1460	1660	1865	2065	2270	2575
Height H _{min}	1240	1640	2040	2450	2850	3260	3870

Dimensions in mm

Calculation of chain length:

$$L_k \approx \frac{L_S}{2} + L_B$$

Rounded to pitch 320 mm

Installation height

(required clearance height):

$$H_Z = H + Z$$

Pre-tension z ≈ 10 mm/m chain length

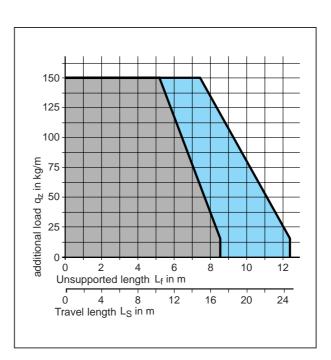
Load diagram

Unsupported length L_f and travel length L_s without support Depending on the additional load (see design guidelines)

An intrinsic chain weight of **62 kg/m** was used as a basis on the load diagram.

With a larger intrinsic weight (for example with stay variant RMD) the permissible additional load is reduced by the amount of the difference.

Explanation of load diagram:


S 3200 - material steel

SX 3200 - material ER 2

SX 3200 - material ER 1

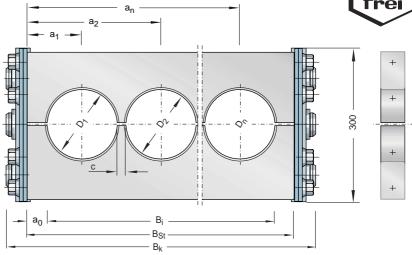
For circular operations KR/RKR combinations are possible. Please contact us for details!

A flat and level surface is required for the carrier system to be installed properly.

If necessary, a support tray should to be installed (see system components).

Technical Data -Series 3200

Stahl verzinkt


Type S 3200 Type SX 3200

Chain cross sections

In accordance with sections in schematic illustration

Stays mounted on every 2nd chain link.

Stay variant "LG" Hole stay - split design

Custom manufacture of hole pattern in accordance with your specifications!

Calculation of chain width:

Calculation of stay width:

$$B_k = \Sigma D + \Sigma c + 84 \text{ mm}$$

220 mm D_{max}

22 mm $a_{0 \, min} =$

4 mm Cmin

250 mm $B_{k \min}$

 $B_{k max} = 1500 mm$

Hole stays are available in an unsplit design.

 $B_i = B_{St} - 2 a_0$

 $B_{St} = \Sigma D + \Sigma c + 44 \text{ mm}$

Special stays

Custom manufacture of stays with regard to design and materials is available based on your specifications.

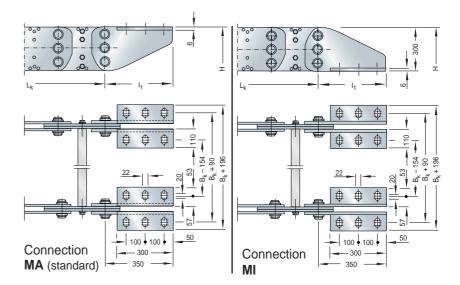
Intrinsic chain weight For two band chains Depending on the chain width

> Hole stays, holes account for 50 % of area

73 69 67 63 q_k in kg/m 61 Intrinsic chain weight 59 55 600 1200 1500 Chain width $\,B_k\,$ in mm

Weight of the chain bands: 55 kg/m (excluding stays)

Technical Data -Series 3200

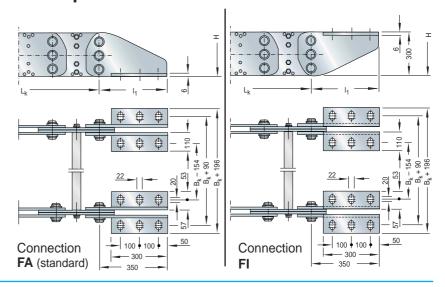


Type S 3200
Type SX 3200
Connection dimensions

The connection variants at the fixed point and at the driver can be combined and subsequently changed if required.

Please state required connection variants in accordance with the ordering key!

Driver connection



Driver and fixed-point connection occurs by attaching double mounting brackets on the inner links.

Ordering key for the connector:

Connection Point F - fixed-point M - driver Connection Type A - bolts facing outward (standard) I - bolts facing inward (towards bend radius)

Fixed-point connection

Ordering key for cable carrier:

Example:

Cable carrier type SX 3200, stay width Bst 820 mm, hole stay – split design – (hole pattern as per your specifications), bend radius KR 1075 mm, made of stainless steel ER1, chain length $L_{\rm k}$ 9280 mm.

Type

Stay width B_{St} in mm

Stay variant

Bend radius KR in mm

Chain band material

Chain length Lk in mm (excluding connector)

Technical Data Series 5000 - 6000 - 7000

Cable Carriers
Type S 5000
Type S 6000
Type S 7000

Type SX 5000 Type SX 6000 Type SX 7000

Profile:

Cable Carriers with straight chain links

Type S: high quality steel

Type SX: rust and acid resistant steel

Using standard components, all carrier systems can be custom manufactured to meet individual application requirements.

Stay variants: frame and hole stay design –

special order

Materials:

Chain Bands and Mounting Brackets

Type S: steel, zinc-plated

Type SX: rust and acid resistant steel

→ Refer to design guidelines

Stays steel

to suit your own individual application

requirements

Chain pitch: 200 mm \rightarrow for types S/SX 5000

320 mm \rightarrow for types S/SX 6000 450 mm \rightarrow for types S/SX 7000

Clearance height h_i : 150 mm \rightarrow for types S/SX 5000

240 mm \rightarrow for types S/SX 6000 370 mm \rightarrow for types S/SX 7000

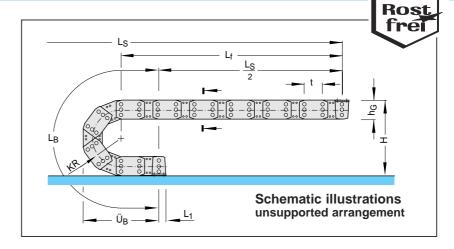
Chain width: customer-specific

the desired width for every individual

application

Bend radii: 5 standard bend radii per type

(intermediate radii upon request)



Technical Data - Series 5000 - 6000 - 7000

Туре	S/SX 5000	S/SX 6000	S/SX 7000
Chain pitch t	200	320	450
Height h _G	200	300	450
Connec. height H _{min}	2	KR + h	l _G
Connec. length I ₁	75	125	200

Variable sizes depending on the bend radius

The connection height of the chain should be $h_G/2$ higher than the height H_{min} !

Type S/SX 5000

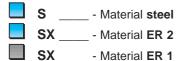
Type S/SX 6000

Type S/SX 7000

A flat surface is required for storing the cable carrier.

A support tray should be used if required (see System Components).

Load diagram


Unsupported length L_f and travel length L_s without support Depending on the additional load (see design guidelines)

An intrinsic chain weight was used as a basis on the load diagram.

40 kg/m for type S/SX 5000 50 kg/m for type S/SX 6000 125 kg/m for type S/SX 7000

With a larger intrinsic weight (for example with stay variant RMD) the permissible additional load is reduced by the amount of the difference.

Explanation of load diagram:

Dimensions in mm

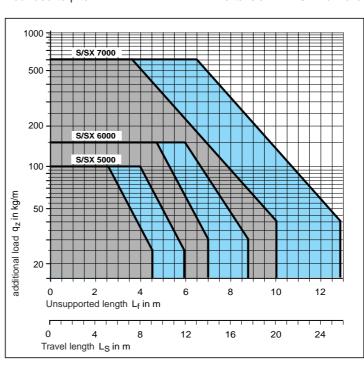
Bend radius	500	600	800	1000	1200
Loop length L _B	2370	2685	3315	3940	4570
Loop overhang Ü _B	1075	1175	1375	1575	1775
Height H _{min}	1200	1400	1800	2200	2600

Bend radius	700	900	1100	1300	1500
Loop length L _B	3480	4110	4735	5365	5995
Loop overhang Ü _B	1615	1815	2015	2215	2415
Height H _{min}	1700	2100	2500	2900	3300

Bend radius	1100	1250	1500	1800	2400
Loop length L _B	5255	5725	6510	7450	9335
Loop overhang Ü _B	2425	2575	2825	3125	3725
Height H _{min}	2650	2950	3450	4050	5250

Calculation of chain length:

$$L_k \approx \frac{L_s}{2} + L_B$$


Rounded to pitch

Installation height

(required clearance height):

$$H_Z = H + Z$$

Pre-tension z ≈ 10 mm/m chain length

Technical Data -Series 5000 - 6000 - 7000

Stahl

ှင် ရှိ ت

Type S/SX 5000 Type S/SX 6000 Type S/SX 7000

Chain cross section

in accordance with section details in schematic illustration Calculation of the chain and stay width Stay design Tube/frame construction

Type

S/SX 5000

S/SX 6000

S/SX 7000

ay width B _{St}	h _{i max}
B _i + 38	150
B _i + 38	240

Dimensions in mm

370

Stays installed on every 2nd chain link!

with dividing stays and dividing bars for

separating the cables/hoses

Please give the number of, and distance between, the dividing stays and bars.

Туре	B _{k min}	B _{k max}	s _T	a _{T max}	a _{x max}
S/SX 5000	250	1200	10	150	150
S/SX 6000	300	1500	10	200	200
S/SX 7000	350	1800	10	250	250

Stay

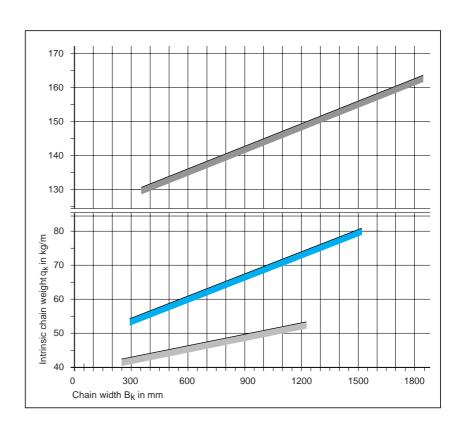
 $B_{i} + 60$

Chain width Bk

 $B_{i} + 117$

 $B_{i} + 123$

 $B_i + 150$


Intrinsic chain weight for two band chains

Depending on the chain width

Weight of the chain bands (excluding stays):

40 kg/m for type S/SX 5000 50 kg/m for type S/SX 6000 125 kg/m for type S/SX 7000

Technical Data - Series 5000 - 6000 - 7000

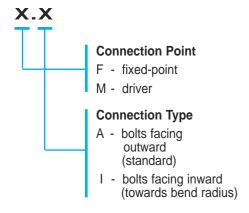
Type S/SX 5000 Type S/SX 6000 Type S/SX 7000

Connection dimensions

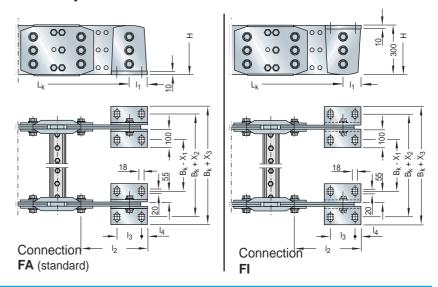
The connection variants at the fixed point and at the driver can be combined and subsequently changed if required.

Please indicate connection variant in accordance with the ordering key!

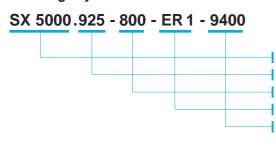
Driver connection


Driver and fixed-point connection occurs by attaching double mounting brackets on the inner links.

Туре	S/SX 5000	S/SX 6000	S/SX 7000
I ₁	75	125	200
l ₂	275	445	650
l ₃	100	200	230
I ₄	25	25	25
X ₁	189	195	200
X ₂	44	38	38
X ₃	134	128	128


Connection

MA (standard)


Ordering key for the connection:

Fixed-point connection

Ordering key for cable carrier:

Example:

Cable carrier type SX 5000, stay width Bst 9250 mm, Tube-/frame stay (as per your specifications), bend radius KR 800 mm, made of stainless steel ER1, chain length $L_{\rm k}$ 9400 mm.

Type

Stay variant B_{St} in mm

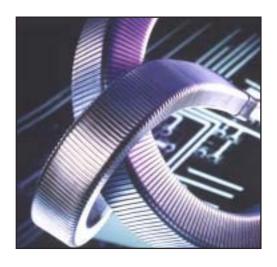
Bend radius KR in mm

Chain band material

Chain length L_k in mm (excluding connection)

Flexible Energy Conduits

made of steel and high-grade steel/plastic


■ MOBIFLEX Flexible Energy Conduits

CONDUFLEX Flexible Energy Conduits

Technical Data - MOBIFLEX

Profile:

MOBIFLEX Flexible Energy Conduits

MOBIFLEX flexible energy conduits consist of flexible metal coil tubes, which as a result of the insertion of pretensioned special-alloy steel strips are self-supporting up to certain lengths.

The "Guidelines for Installing Cables and Hoses in Cable Carriers" are to be observed when designing the conduits (see page P 037).

Note:

When a number of electric cables are installed in a flexible conduit, the electrical current-carrying capacities of these cables should be selected in accordance with the VDE 0100 code such that the maximum permissible temperatures for the cable jackets and the material of the flexible conduit are not exceeded. (Maximum continuous temperature = 60 °C).

The following types are available from KABELSCHLEPP's stock:

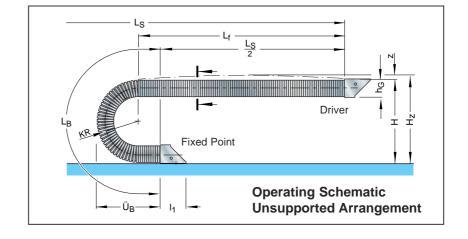
```
MOBIFLEX MF 030.1 → interior cross-section
                                            26 x 24 mm
MOBIFLEX MF 050.1 → interior cross-section
                                            45 x 24 mm
MOBIFLEX MF 050.2 → interior cross-section
                                            45 x 44 mm
MOBIFLEX MF 080.1 → interior cross-section
                                            80 x 40 mm
MOBIFLEX MF 080.2 → interior cross-section
                                            80 x 54 mm
MOBIFLEX MF 080.3 → interior cross-section
                                            80 x 78 mm
MOBIFLEX MF 110.1 → interior cross-section 109 x 53 mm
MOBIFLEX MF 110.2 → interior cross-section 109 x 73 mm
MOBIFLEX MF 110.3 → interior cross-section 109 x 108 mm
MOBIFLEX MF 170.1 → interior cross-section 170 x 72 mm
MOBIFLEX MF 170.2 → interior cross-section 170 x 102 mm
MOBIFLEX MF 170.3 → interior cross-section 170 x 167 mm
```

MOBIFLEX flexible energy conduits have proved themselves in the engineering construction and apparatus manufacturing industries!

Technical Data - MOBIFLEX

Design of the MOBIFLEX Flexible Energy Conduits

Connection height H:


$$H_{min} = 2KR + h_{G}$$

Required clearance height H₇:

$$H_Z = H + Z$$

Loop overhang ÜB:

$$\ddot{U}_{B} = 1.5 \text{ KR} + \text{hG/2}$$

Load Diagram

Unsupported length L_f / Travel length L_S depending on the additional load

Calculation of length of conduit:

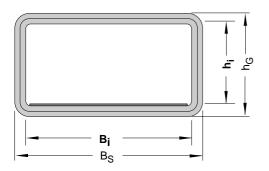
$$L_{ES} = \frac{L_S}{2} + L_B$$

Loop length $L_B = KR \cdot \pi + Reserve$ (KR)

Conduit length when extended:

Conduit contraction $L_{VK} = h_G/2 \cdot \pi$

Long travel lengths


If the unsupported length of the flexible conduit is exceeded, it may be possible to cover the required travel length with the assistance of suitable supports.

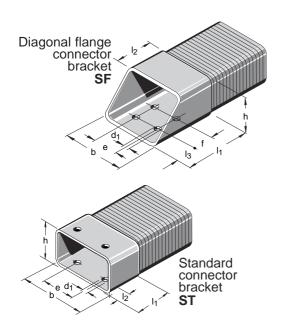
KABELSCHLEPP will be pleased to provide design assistance!

Dimensions / Weight

Dimensions in mm / Weights in kg/m

Indicated bend radii = KR_{max}

Manufacturing


tolerances: - 20 to - 30 mm

Conduit Type	B _S	B _i	h _G	h _i		Avail bend r		S	Weight
MF 030.1	30	26	30	24	80				1.2
MF 050.1	50	45	30	24	75	100		150	2.0
MF 050.2	50	45	50	44	110	150		200	2.5
MF 080.1	85	80	45	40	100	150		200	3.0
MF 080.2	85	80	60	54	150	200		250	3.5
MF 080.3	85	80	85	78	200				5.1
MF 110.1	115	109	60	53	150	200		250	4.8
MF 110.2	115	109	80	73	200	250		350	5.3
MF 110.3	115	109	115	108	300				6.6
MF 170.1	175	170	80	72	190	250	300	350	7.2
MF 170.2	175	170	110	102	250	300		400	8.2
MF 170.3	175	170	175	167	365				9.2

Technical Data - MOBIFLEX

Connection Dimensions for MOBIFLEX Flexible Energy Conduits

Connection dimensions For diagonal flange connector brackets

Dimensions in mm

Туре	b	h	е	f	d	I ₁	l ₂	l ₃
MF 030.1	34	34		40	9	120	60	10
MF 050.1	54	34	20	40	9	120	60	10
MF 050.2	54	54	20	40	9	120	60	10
MF 080.1	90	50	50	40	9	120	60	10
MF 080.2	90	65	50	40	9	120	60	10
MF 080.3	90	90	50	40	9	120	60	10
MF 110.1	120	65	80	40	9	120	60	10
MF 110.2	120	85	80	40	9	120	60	10
MF 110.3	120	120	80	40	9	120	60	10
MF 170.1	180	85	140	40	9	120	60	10
MF 170.2	180	115	140	40	9	120	60	10
MF 170.3	180	180	140	40	9	120	60	10

Cross flange connector bracket QF

High flange connector bracket HF

Connection dimensions

For standard, cross-flange and high flange connector brackets

Dimensions in mm

Туре	b	h	е	e _b	e _h	d	I ₁	l ₂	b _w	b ₁	h ₁
MF 030.1	34	34		56	56	9	60	20	20	74	74
MF 050.1	54	34	20	76	56	9	60	20	20	94	74
MF 050.2	54	54	20	76	76	9	60	20	20	94	94
MF 080.1	89	49	50	111	71	9	75	20	20	129	89
MF 080.2	89	64	50	111	86	9	75	20	20	129	104
MF 080.3	89	89	50	111	111	9	75	20	20	129	129
MF 110.1	119	64	80	141	86	9	95	20	20	159	104
MF 110.2	119	84	80	141	106	9	95	20	20	159	124
MF 110.3	119	119	80	141	141	9	95	20	20	159	159
MF 170.1	179	84	140	201	106	9	95	20	20	219	124
MF 170.2	179	114	140	201	136	9	95	20	20	219	154
MF 170.3	179	179	140	201	201	9	95	20	20	219	219

Front flange connector brackets can be made up following customer drawings!

The SF, ST, QF and HF connector brackets can be combined.

Please state the desired type of connector with your order.

Example:

Fixed Point **SF** (Diagonal flange connector bracket)

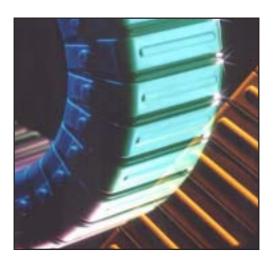
Driver QF (Cross flange connector

bracket)

Connector variants for diagonal flange connector brackets

Connecting surfaces outside/outside

Connecting surfaces inside/outside


Connecting surfaces inside/inside

Support Tray

A flat and level surface is required for the flexible conduit to be installed properly. If necessary a support tray should be used (see System Components).

CONDUFLEX Flexible Energy Conduits

Profile:

CONDUFLEX (patented by KS) flexible energy conduits consist of high grade steel stirrups and frames made of glass-fibre-reinforced polyamide.

The brackets, assembled with the frames, form the flexible conduit. The number of units assembled gives the conduit length required, which can easily be lengthened or shortened.

In the case of any external damage occurring to the brackets, these can easily be replaced.

CONDUFLEX flexible conduits can be used for horizontal, vertical and combined horizontal and vertical movements.

The following types are immediately available from KABELSCHLEPP's stock and our agencies' warehouses:

CONDUFLEX CF 055 → interior cross-section 45 x 25 mm

CONDUFLEX CF 060 → interior cross-section 36 x 40 mm

CONDUFLEX CF 085 → interior cross-section 73 x 38 mm

CONDUFLEX CF 115 → interior cross-section 102 x 52 mm

CONDUFLEX CF 120 → interior cross-section 100 x 70 mm

CONDUFLEX CF 175 → interior cross-section 162 x 72 mm

CONDUFLEX flexible energy conduits have proved themselves in the engineering construction and apparatus manufacturing industries and on handling equipment and robots to great effect!

CONDUFLEX Range Design of the Flexible Energy Conduits

Pitch t \longrightarrow see dimensions table Height $h_G \longrightarrow$ see conduit cross sections

Height $H_{min} = 2 KR + h_G$

Length I₁ → see connection dimensions

A flat and level surface is required for the flexible conduit to be installed properly. If necessary a support tray should be used (see System Components).

Fixed Point Operating Schematic Unsupported Arrangement

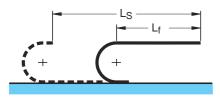
Variable Models

depending on the bend radius

Weights

Abbreviations:

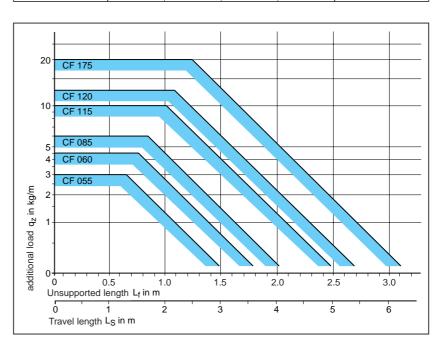
KR = Bend radius $L_B = Length of bend$ $\ddot{U}_B = Bend overhang$


H_{min} = Minimum connection height

Dimensions in mm

CONDUFLEX Type	KR	L _B	Ü _B	H _{min}	Conduit weight in kg/m
	65	405	184	168	
CF 055	100	515	219	238	1.25
	150	675	269	338	
CF 060	100	515	226	252	1.60
	100	515	226	252	
CF 085	150	675	276	353	1.90
CF 000	200	830	326	452	1.90
	250	985	376	552	
	140	690	299	347	
CF 115	225	960	384	517	2.60
	300	1200	459	667	
CF 120	155	740	323	396	2 00
GF 120	200	880	368	486	3.80
	185	830	382	464	
CF 175	250	1035	447	594	5.20
	350	1400	547	794	

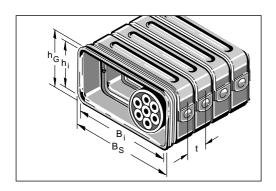
Load Diagram

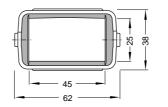

Unsupported length L_f/Travel lengths depending on the additional load (see Construction Guidelines)

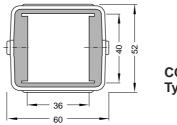
Calculation of length of conduit:

$$L_{ES} \approx \frac{L_S}{2} + L_B$$
 rounded to pitch t

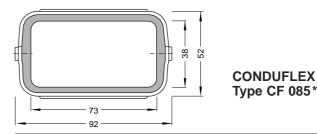
Long travel lengths


If the unsupported length of the flexible conduit is exceeded, it may be possible to cover the required travel length with the assistance of suitable supports. Please consult us!


Design → see Construction Guidelines


CONDUFLEX Range Conduit Cross-Sections

according to sectional detail with operating schematic

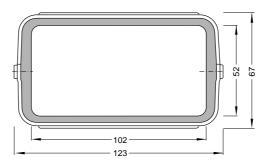


CONDUFLEX Type CF 055*

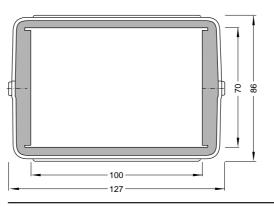
CONDUFLEX Type CF 060

Overview

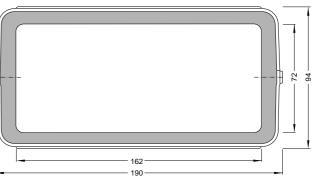
Dimensions in mm


CONDUFLEX Type	Bs	B _i	h _G	h _i	t
CF 055*	62	45	38	25	20
CF 060	60	36	52	40	20
CF 085*	92	73	52	38	20
CF 115*	123	102	67	52	25
CF 120	127	100	86	70	25
CF 175*	190	162	94	72	30

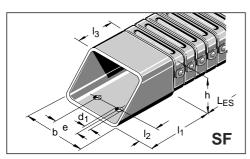
*) KABELSCHLEPP CONDUFLEX flexible energy conduits types CF 055, CF 085, CF 115 and CF 175 can be fitted with protective straps to shield the impact slots of the plastic frames from contamination.



The "Guidelines for Installing Cables and Hoses in Cable Carriers" are to be observed when planning a CONDUFLEX flexible energy conduit!


see Construction Guidelines

CONDUFLEX Type CF 115*


CONDUFLEXType CF 120

CONDUFLEX Type CF 175*

CONDUFLEX Range - Connection Dimensions

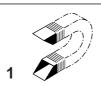
Connector variants for diagonal flange connectors

The SF, ST, QF and HF connector brackets can be combined.

Please state the desired type of connector with your order.

Example:

Driver

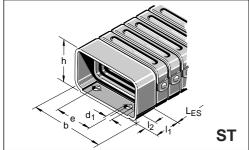

SF (Diagonal flange connector bracket) with connecting surface outside

Fixed Point QF (Cross-flange connector

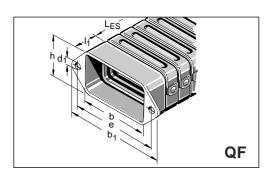
bracket)

Diagonal Flange Connector Bracket

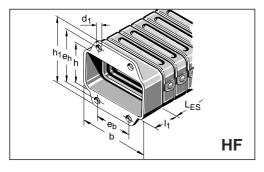
CONDUFLEX Type	b	h	е	d ₁	I ₁	l ₂	l ₃
CF 055	55	36	22	6.5	44	12.5	20
CF 060	55	52	22	6.5	44	12.5	20
CF 085	85	50	50	6.5	70	15.0	32
CF 115	117	66	70	8.5	84	17.5	34
CF 120	120	84	70	8.5	82	17.5	48
CF 175	182	92	100	10.5	100	22.5	45


Connecting surfaces outside/outside

Connecting surfaces inside/outside



Connecting surfaces inside/inside


Standard Connector Bracket

CONDUFLEX Type	b	h	е	d ₁	I ₁	l ₂
CF 055	55	36	22	6.5	20	8.5
CF 060						
CF 085	85	52	50	6.5	25	10.0
CF 115	116	68	65-70	8.5	35	10.0
CF 120	120	84	70	8.5	35	12.5
CF 175	182	92	100	10.5	40	15.0

Cross-Flange Connector Bracket

CONDUFLEX Type	b	h	b ₁	е	d ₁	I ₁
CF 055	55	35	90	75	6.5	20
CF 060						
CF 085	85	50	120	105	6.5	25
CF 115	116	64	160	140	8.5	35
CF 120						
CF 175	182	90	226	200	10.5	40

High Flange Connector Bracket

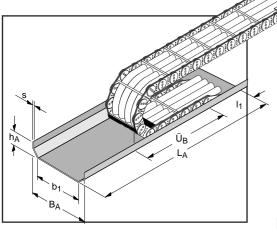
CONDUFLEX Type	b	h	h ₁	e _b	e _h	d ₁	I ₁
CF 055	55	35	70	18	55	6.5	20
CF 060							
CF 085	85	50	85	45	70	6.5	25
CF 115	116	64	110	60	90	8.5	35
CF 120							
CF 175	182	90	136	95	110	10.5	40

Ordering Key: CF 115 - 140 - 1200 CONDUFLEX flexible energy conduit type CF 115 with bend radius KR 140 mm and a length LES of 1200 mm

CONDUFLEX Type

Bend radius KR in mm

Conduit length L_{ES} in mm (without connector)



System components

- Trays
- Guide channels
- Support rollers
- Steel strip covers
- Electric cables
- Strain relief components

Support trays

An even surface is required for the safe operation of the cable carrier system.

If this is not available, a support tray must be used.

Length of support tray:

(with standard connection)

$$L_{A} = \frac{L_{S}}{2} + \ddot{U}_{B} + I_{1}$$

Ü_B = Bend overhang
 I₁ = Connection length
 Ü_B and I₁ - See Technical Data for cable carrier

If strain relief is taking place at the fixed point, the length of the tray must be increased accordingly.

Dimensions Table:

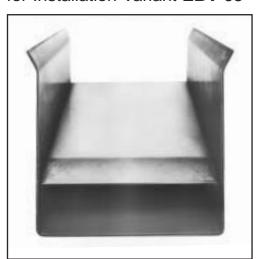
Dimensions in mm

Material: Stahl verzinkt verzinkt or Rost High grade steel,

rust and acid resistant.

Standard

supply length: 2000 mm


Example for ordering:

Support tray for cable carrier Type S 0950 - Bk 250 mm Length L_A 3200 mm Material: zinc-plated steel sheet

Difficitsions fa	510.		Diricion	ווווו ווו פווכ
Series	Inside width b ₁	Total width B _A	Total- height h _A	Steel sheet thickness S
0600/0900	B _k + 15	B _k + 40	30	2
1200/1800	B _k + 20	B _k + 60	50	3
2500/3200	B _k + 25	B _k + 75	80	3
5000/6000/7000	B _k + 25	B _k + 75	80	3
MF 030.	40	55	20	1.5
MF 050.	65	80	20	1.5
MF 080.	100	115	20	1.5
MF 110.	135	165	30	2.0
MF 170.	200	230	40	3.0
CF 055/CF 060	65	80	20	1.5
CF 085	100	115	20	1.5
CF 115	130	150	30	2.0
CF 120	135	165	30	2.0
CF 175	200	230	40	3.0

Guide channels

for Installation Variant EBV 05

The gliding area of the upper chain run is continued in the channel with a slide piece.

(see schematic illustration to the right)

With an opposing arrangement this tray is used as a bridge between the fixed point connections.

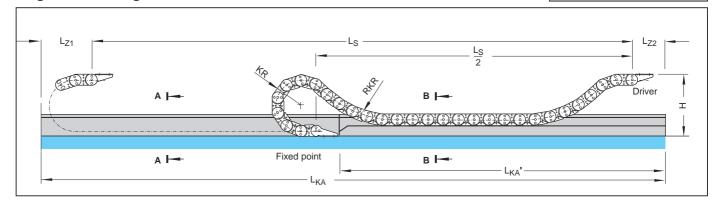
In order to reduce the gliding resistance and the abrasive action between the cable carrier and the support, a special glide support can be affixed. This is recommended for speeds of > 0.5 m/s and for frequent travel cycles.

Material:

Stahl verzinkt Rost

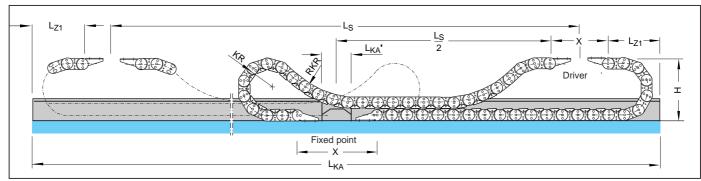
Steel sheet – zinc-plated

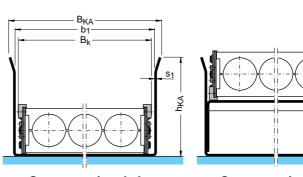
or


High grade steel, rust and acid resistant.

Standard supply length: 2000 mm

Calculation of Guide Channel Length LKA


Single-sided arrangement of Cable Carrier



Opposing arrangement of Cable Carriers

$$L_{KA} = L_S + 2 L_{Z1} + X$$

Channel cross-sections:

Cross section A-A Channel profile without support

Cross section B-B Channel profile with support

Measurements:

Dimensions in mm

Abbreviations:

 L_{KA} = total channel length

 L_{KA} ' = channel length with support

With single-sided $\triangleq L_S/2$ arrangement

overhang

≙ Ü_B + 50 mm

 L_{72} = Additional dimension for connection

△ I₁ + 50 mm

Series	b ₁	B _{KA}	h _{KA}	h ₁	s ₁
0600	B _k + 7	B _k + 12	200	54	2
0900	B _k + 9	B _k + 14	300	73	2
1200	B _k + 9	B _k + 15	400	99	3
1800	B _k + 11	B _k + 21	400	155	3

Guide channels for all other series on request!

For all other abbreviations see page P 009!

Support Rollers

for installation variant EBV 04

DR 90 for series 0600

DR 120 for series 0900/1200/1800

DR 220 for series 2500

Rollers for all other series on request!

Abbreviations:

D_R = Diameter of support roller

D_S = Diameter of wheel flange

 B_k = Chain width

b₁ = Clearance width of roller

 B_G = Total width of support

 B_R = Width of roller

B_E = Contact width of roller

 B_P = Width of base plate

 H_A = Axle height of support roller

Lp = Length of base plate

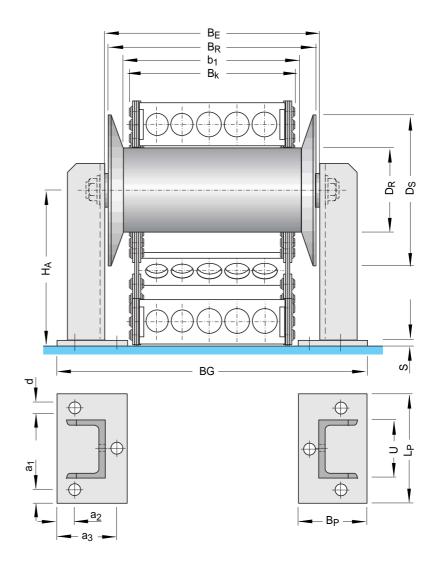
U = Width of U profile

a₁ = Hole distance

to side edge of base plate

a₂ = Hole distance

to outer edge of base plate


a₃ = Hole distance

to outer edge of base plate

d = diameter

of fixing holes

s = thickness of base plate

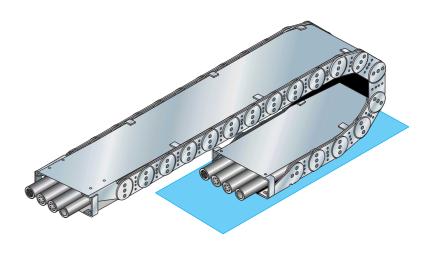
Dimension table for support rollers:

D _R	b ₁	B _R	BE	B_G	D_{S}
90	B _k + 15	B _k + 45	B _k + 59	B _k + 169	Ø 170
120	B _k + 20	B _k + 50	B _k + 64	B _k + 174	Ø 200
220	B _k + 30	B _k + 60	B _k + 74	B _k + 184	Ø 300

Dimensions in mm

Dimension table for support blocks:

Dimensions in	mm	١
---------------	----	---


For roller	H _A	B _P	L _P	U	a ₁	a ₂	a ₃	d	s
90	2 KR - 45	80	180	80	20	40		Ø 14	8
120	2 KR - 60	100	180	80	20	20	80	Ø 18	8
220	2 KR - 110	100	180	80	20	20	80	Ø 18	8

Steel strip covers

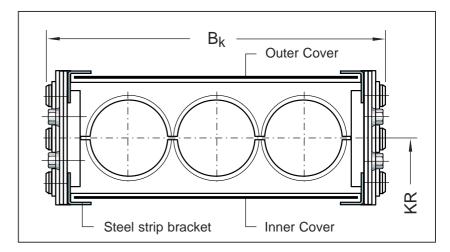
To protect cables and hoses from hot chips and heavy grime, cable carriers can be fitted with a cover made of rust and acid resistant spring steel.

Maximum width of steel strip: 1000 mm

Guidance of steel strip cover:

Is by way of strip retaining brackets on inside of chain bands

Fixing of steel strip cover: (for standard connection)


Cover on inside:

with strip retainers on mounting brackets

Cover on outside:

with fixing bolts on mounting brackets

Length of steel strip cover Steel strip **Series** Outer cover Inner cover cover 0600 $B_k - 22$ $L_k + 280$ $L_k + 130$ B_k - 27 0900 $L_k + 360$ $L_k + 150$ 1200 $L_k + 470$ $L_k + 170$ $B_k - 34$ 1800 $B_k - 40$ $L_k + 640$ $L_k + 200$ 2500 $L_k + 945$ $L_k + 255$ $B_k - 48$

Measurements

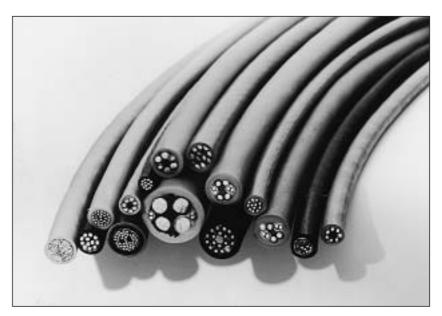
Dimensions in mm

Steel strip covers for all other series are available on request!

Electric cables

Which Cables? – For which application? There is no standard solution!

The bending flexibility of the cable required for a moving cable carrier is achieved by a special stranding technique of the inner cable which performs at its optimum under maximum load.


It is the interaction between stranding, cable lead and cover insulation material and also sliding and filling materials which turn a cable into a moving power carrier.

Long-term evaluations and field tests on cables have conclusively shown which are the optimal materials and design configurations. KABEL-SCHLEPP offers numerous cable solutions for all applications, ensuring optimum operation of the carrier system by selecting the right combination of cable carriers and appropriate cables.

For example, an outer cover made of PVC or PUR, with its outstanding mechanical and chemical properties, guarantees the required level of operational safety in cable carrier systems.

For applications with high loads or applications which are mechanically complex (for example in limited installation areas), our solutions are:

Cables with reduced diameters for cable carrier systems with adapted stranding technology and optimised insulation materials (e.g. TPE).

We offer:

KABELSCHLEPP System Competence

- + Cable Expertise
- Operational reliability for your application

Flexible electric cables for

KABELSCHLEPP Cable Carriers

To complete your cable carrier system, we offer high-quality standard electric cables featuring highly flexible outer covers, resistant to abrasion and chemicals

Supply Index	Type of cable		Insulation Core insulation	materials Outer cover	
	Power cable		PVC	PVC	
	Power cable		PVC	PUR	
	Power cablel (reduced diameter)	shielding -	TPE	PUR	
	Control cable		PVC	PVC	
	Control cable	optional:	PVC	PUR	
	Control cable (reduced diameter)	- opt	TPE	PUR	
	Electronic cable - screened twin cable -		TPE	PUR	
	Systems oriente control cables for NC machine			g to CNC ication	
	Special cables for cable carrier systems		according to application		

Cover Materials:

PVC - polyvinyl chloride

PUR - polyeurethane

TPE - thermoplastic elastomer (halogen-free)

Supply Index:

→ From stock

Cable length according to your specification to suit the selected carrier system!

KABELSCHLEPP supplies cost-effective electric cables in a variety of performance categories, capable of ideally matching your application. Cables can be shipped with the cable carrier, ready for installation.

Contact us - we are here to help!

Strain relief components

The proper selection of strain relief components is essential for operational reliability in a cable/hose carrier system.

The forces being carried by the cable carriers must not be transferred onto the cables/hoses.

Always follow the guidelines for installing cables and hoses in KABELSCHLEPP cable carrier systems!

Strain relief at the chain connection

by SZL-Strain relief devices

by means of saddle-type clamps and/or block clamps with profile rails for series 0600, 0900, 1200 and 1800

Strain relief components for other series are available on request!

Clamping is dependent on the type of cable, cable carrier length and installation length.

Strain relief on both sides:

for cables with a high degree of flexibility or low intrinsic strength
for vertically-arranged cable carriers
for power cables which move within the unsupported area of the cable carriers.

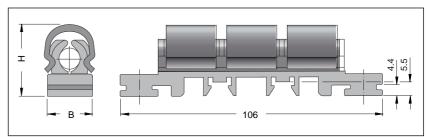
Strain relief at the driver:

for longer travel lengths (except for electric cables with lower intrinsic strength)
for pressure hoses

In the case of cable carriers with stacked sliding upper and lower runs (installation variant EBV 05), the screw heads of the saddle clamps and/ or the height of the block clamps must not exceed the height of the chain link!

Benefits:

- No screws or cable ties
- Large surface area in contact with the cables
- Defined contact pressure exerted by spring clamps
- ☐ Vibration-safe
- Assembly quick, easy and no tools required
- Damage to the cables or hoses arising from the saddle clamps being set tightly or too loosely, or from the cable ties causing pinching, is ruled out.
- Suitable for standard commercial bearing rails (see picture, top left)
- Can also be used for strain relief in switch cabinets.


SZL Strain relief devices

The first really effective strain relief device – soft and protective of cables in cable carriers

Fixing options for strain relief devices:

- By clipping into C-Profiles 34 x 15 mm with slit width of 16 -17 mm
- By clipping onto cap bar 35 x 7.5 mm DIN EN 50022
- □ By pushing onto two C-rails 20 x 10 mm
 with slit width of 11 12 mm
 (fastening of basic elements via slotted screw bolt connection)
- ☐ By directly screwing onto the basic elements

Available Sizes:

Dimensions in mm

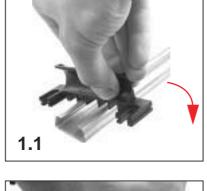
Туре	Ident-No.	For Diameter Ø	Width Ø _{min}	n B bei Ø _{max}	Height H
SZL 10	24990	> 8.0 - 10.5 mm	20	20	30
SZL 14	24991	>10.5 - 14.5 mm	23	26	35
SZL 18	24992	>14.5 - 18.0 mm	25	32	40
SZL 22	24993	>18.0 - 22.0 mm	30	36	44
SZL 27	24994	>22.0 - 27.0 mm	34	39	50
SZL 32	24995	>27.0 - 32.0 mm	39	44	56

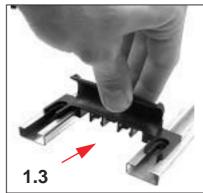
Double-decker strain relief

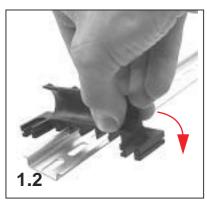
If a cable carrier is fitted with very many conductors, the SZL strain relief device can be installed in a doubledecker arrangement in a plastic cable carrier as shown here.

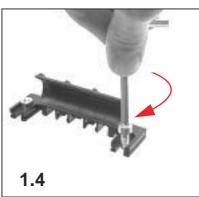
Please ask us for more information!

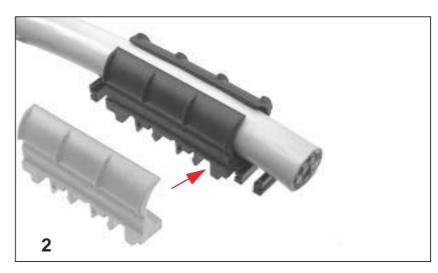
Fitting Instructions for SZL strain relief devices


Fixing of the basic element


- 1.1 by clipping into a C-Rail
- 1.2 by clipping onto a cap bar
- 1.3 by insertion into two C-Profiles; the basic elements are fastened via a slotted screw bolt connection in the profiles
- 1.4 by directly screwing it on.

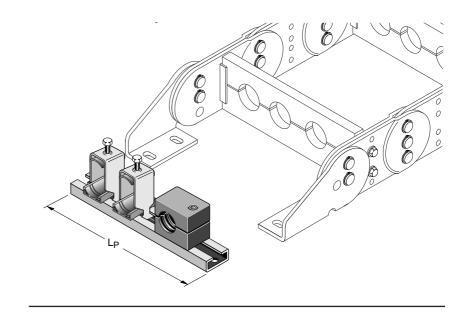

Solutions 1.3 and 1.4 are for transferring higher tensile forces and are therefore strongly recommended as a standard solution.


After fixing the basic element insert the cables, then:


2. Attach the counterpart of the strain relief device.

Fix the basic element, counterpart and electric cable together by attaching the clamping clip.

Positioning of strain relief components

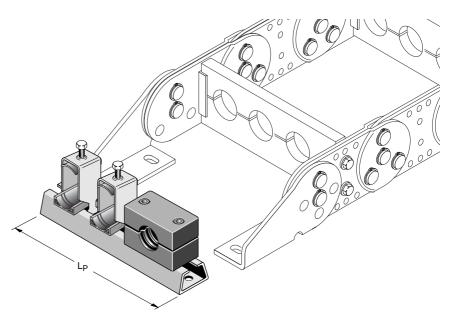

For series 0600 + 0900:

The C-steel profile is installed behind mounting brackets.

Strain relief at the fixed-point and at the driver connection is identical!

The C-steel profile fits all commercial saddle-type clamps with a small base and comparable block-type clamps. (slit width 11 - 12 mm)

Attach profile with M 6 - DIN 6912 sockethead cap screws.


For series 1200 + 1800:

The C profile made of steel or aluminum is installed behind mounting brackets.

Strain relief at the fixed-point and at the driver connection are identical!

The C profile fits all commercial saddletype clamps with a large base and comparable block-type clamps. (slit width 16 - 17 mm)

Attach profile with M 10 - DIN 6912 sockethead cap screws.

Strain relief equipment for all other series is available on request!

Strain relief elements for series 0600 and 0900

11 25 Lp

Assembly profile

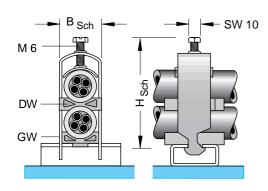
C-profile

fits all commercial saddle-type clamps with small base (slit width 11 - 12 mm)

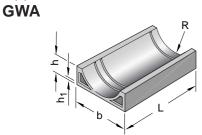
Material: **steel** Item-no.: **3931**

Single clamps - for one cable

Туре	for cable Ø	Height HSch	Width BSch	Item No.
BA 12	6 - 12 mm	33 - 49	16	16891
BA 14	10 - 14 mm	34 - 50	18	16892
BA 16	12 - 16 mm	36 - 52	20	16893
BA 18	14 - 18 mm	40 - 56	22	16894
BA 22	18 - 22 mm	44 - 60	26	16895
BA 26	22 - 26 mm	49 - 65	30	16896
BA 30	26 - 30 mm	53 - 69	34	16897
BA 34	30 - 34 mm	60 - 76	38	16898
BA 38	34 - 38 mm	72 - 88	42.5	16899
BA 42	38 - 42 mm	85 - 101	46.5	16900


Double clamps - for two cables stacked on one top of the other

Туре	for cable Ø	Height HSch	Width BSch	Item No.
BA 12/2	6 - 12 mm	43.5 - 59.5	16	16901
BA 14/2	10 - 14 mm	46.5 - 62.5	18	16902
BA 16/2	12 - 16 mm	52.5 - 68.5	20	16903
BA 18/2	14 - 18 mm	55.5 - 71.5	22	16904
BA 22/2	18 - 22 mm	64 - 80	26	16905


Triple clamps - for three cables stacked on top of each other

Туре	for cable Ø	Height HSch	Width BSch	Item No.
BA 12/3	6 - 12 mm	59.5 - 75.5	16	16906
BA 14/3	10 - 14 mm	78 - 98	18	16907

Saddle-type clamps with small base

Opposite sleeve

Double sleeve R

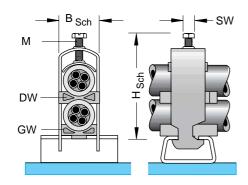
Other sizes and designs available on request!

Opposite sleeves - for uniform distribution of tensile forces

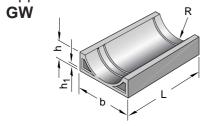
Туре	for cable Ø	b	h	h1	R	L	Item No.
GW 12	6 - 12 mm	12	4	1.0	6	40	16908
GW 14	10 - 14 mm	14	4.5	1.0	7	40	16909
GW 16	12 - 16 mm	16	4.5	1.0	8	40	16910
GW 18	14 - 18 mm	18	4.5	1.0	9	40	16911
GW 22	18 - 22 mm	20	5.5	1.5	11	40	16912
GW 26	22 - 26 mm	24	6.5	1.5	13	40	16913
GW 30	26 - 30 mm	28	7	1.5	15	40	16914
GW 34	30 - 34 mm	32	8	2.0	18	40	16915
GW 38	34 - 38 mm	38	9	2.0	19.5	40	16916
GW 42	38 - 42 mm	42	10	2.0	21.5	40	16917

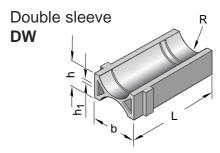
Double

Туре	for cable Ø	b	h	h1	R	L	Item No.
DW 12	6 - 12 mm	12	7	1,0	6	40	16862
DW 14	10 - 14 mm	14	8	1,0	7	40	16863
DW 16	12 - 16 mm	16	9	1,0	8	40	16864
DW 18	14 - 18 mm	18	9	1,0	10	40	16865
DW 22	18 - 22 mm	22	10	1,5	12	40	16875


Strain relief elements for series 1200 and 1800

Assembly profile-C-Rail fits all commercial saddle-type clamps with a large base (slit width 16 – 17 mm)




Material:	Aluminium	Steel	
Item No.:	3926	3932	

Saddle-type clamps with a large base

Opposite sleeve

Other sizes and designs available on request!

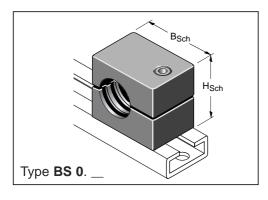
		,	11 * 14	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			14
	Туре	for cable Ø	Height HSch	Width BSch	M	SW	Item No.
	B 12	6 - 12 mm	31.5 - 47.5	16	6	10	16840
	B 14	10 - 14 mm	33.5 - 49.5	18	6	10	16841
	B 16	12 - 16 mm	34.5 - 50.5	20	6	10	16842
bs	B 18	14 - 18 mm	37.5 - 53.5	22	6	10	16843
١Ξ	B 22	18 - 22 mm	41.5 - 57.5	26	6	10	16844
clamps	B 26	22 - 26 mm	47.5 - 63.5	30	6	10	16845
<u>o</u>	B 30	26 - 30 mm	52.5 - 68.5	34	6	10	16846
lgι	B 34	30 - 34 mm	64.5 - 80.5	38	6	10	16847
Single	B 38	34 - 38 mm	70.5 - 86.5	42.5	6	10	16848
	B 42	38 - 42 mm	73.5 - 89.5	46.5	6	10	16866
	B 46	42 - 46 mm	80.5 - 96.5	50.5	8	13	16867
	B 50	46 - 50 mm	83.5 - 99.5	54.5	8	13	16868
	B 12/2	6 - 12 mm	43.5 - 59.5	16	6	10	16849
, n	B 14/2	10 - 14 mm	49.5 - 65.5	18	6	10	16850
clamps	B 16/2	12 - 16 mm	55.5 - 71.5	20	6	10	16851
an	B 18/2	14 - 18 mm	60.5 - 76.5	22	6	10	16852
	B 22/2	18 - 22 mm	75.5 - 91.5	26	6	10	16872
Double	B 26/2	24 - 26 mm	83.5 - 99.5	30	6	10	16873
qn	B 30/2	28 - 30 mm	91.5 - 107.5	34	6	10	16933
0	B 34/2	32 - 34 mm	99.5 - 115.5	38	6	10	16934
_	B 38/2	36 - 38 mm	107.5 - 123.5	42.5	6	10	16935
	B 42/2	40 - 42 mm	115.5 - 131.5	46.5	6	10	16936
S	B 12/3	12 mm	54.5 - 70.5	16	6	10	16876
clamps	B 14/3	14 mm	66.5 - 82.5	18	6	10	16877
an	B 16/3	16 mm	71.5 - 87.5	20	6	10	16878
ᇹ	B 18/3	18 mm	77.5 - 93.5	22	6	10	16937
Triple	B 22/3	22 mm	89.5 - 105.5	26	6	10	16938
ri	B 26/3	26 mm	101.5 - 117.5	30	6	10	16939
-	B 30/3	30 mm	113.5 - 129.5	34	6	10	16940

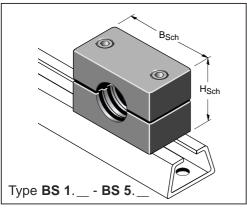
Opposite sleeve - for uniform distribution of tensile forces

Туре	for cable Ø	b	h	h1	R	L	Item No.
GW 12	6 - 12 mm	12	4	1.0	6	40	16853
GW 14	10 - 14 mm	14	4.5	1.0	7	40	16854
GW 16	12 - 16 mm	16	4.5	1.0	8	40	16855
GW 18	14 - 18 mm	18	4.5	1.0	9	40	16856
GW 22	18 - 22 mm	20	5.5	1.5	11	40	16857
GW 26	22 - 26 mm	24	6.5	1.5	13	40	16858
GW 30	26 - 30 mm	28	7	1.5	15	40	16859
GW 34	30 - 34 mm	32	8	2.0	18	40	16860
GW 38	34 - 38 mm	38	9	2.0	19.5	40	16861
GW 42	38 - 42 mm	42	10	2.0	21.5	40	16869
GW 46	42 - 46 mm	46	11	2.0	23.5	40	16870
GW 50	46 - 50 mm	50	12	2.0	25.5	40	16871

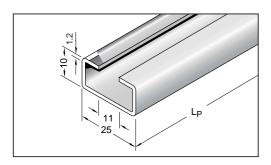
Double sleeve - for distribution of tensile forces on both sides

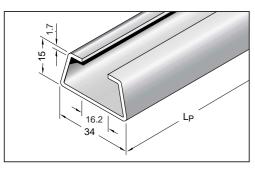
Туре	for cable Ø	b	h	h1	R	L	Item No.
DW 12	6 - 12 mm	12	7	1.0	6	40	16862
DW 14	10 - 14 mm	14	8	1.0	7	40	16863
DW 16	12 - 16 mm	16	9	1.0	8	40	16864
DW 18	14 - 18 mm	18	9	1.0	10	40	16865
DW 22	18 - 22 mm	22	10	1.5	12	40	16875
DW 24	22 - 24 mm	24	10	1.5	12	40	16941
DW 26	24 - 26 mm	26	12	1.5	14	40	16942
DW 28	26 - 28 mm	28	12	1.5	14	40	16943
DW 30	28 - 30 mm	30	15	2.0	16	40	16944
DW 34	30 - 34 mm	34	15	2.0	18	40	16945
DW 38	34 - 38 mm	38	15	2.0	20	40	16946
DW 42	38 - 42 mm	42	20	4.0	21.5	40	16947




Block clamps

with tightening screw(s) and mounting rail nut


for series 0600 ... 1800


Clamping jaw material: **PP**

Additional sizes and designs are available on request!

Single b	olock clam	ps - fo	or one c	able		
Туре	for cable Ø	Height H _{Sch}	Width B _{Sch}		rews DIN 6912 Length	Item No.
BS 0.06	6 - 7 mm	26	28	1	35	16701
BS 0.07	7 - 8 mm	26	28	1	35	16702
BS 0.08	8 - 9 mm	26	28	1	35	16703
BS 0.09	9 - 10 mm	26	28	1	35	16704
BS 0.10	10 - 12 mm	26	28	1	35	16705
BS 1.06	6 - 7 mm	26	34	2	35	16706
BS 1.07	7 - 8 mm	26	34	2	35	16707
BS 1.08	8 - 9 mm	26	34	2	35	16708
BS 1.09	9 - 10 mm	26	34	2	35	16709
BS 1.10	10 - 11 mm	26	34	2	35	16710
BS 1.12	12 - 14 mm	26	34	2	35	16711
BS 2.14	14 - 16 mm	32	40	2	40	16712
BS 2.16	16 - 18 mm	32	40	2	40	16713
BS 2.18	18 - 20 mm	32	40	2	40	16714
BS 3.20	20 - 22 mm	36	48	2	45	16715
BS 3.22	22 - 23 mm	36	48	2	45	16716
BS 3.23	23 - 25 mm	36	48	2	45	16717
BS 3.25	25 - 27 mm	36	48	2	45	16718
BS 3.27	27 - 30 mm	36	48	2	45	16719
BS 3.30	30 - 34 mm	36	48	2	45	16721
BS 4.32	32 - 34 mm	56	69	2	65	16722
BS 4.34	34 - 36 mm	56	69	2	65	16723
BS 4.35	35 - 37 mm	56	69	2	65	16724
BS 4.38	38 - 40 mm	56	69	2	65	16725
BS 4.40	40 - 42 mm	56	69	2	65	16726
BS 4.42	42 - 44 mm	56	69	2	65	16727
BS 5.45	45 - 48 mm	65	85	2	75	16728
BS 5.48	48 - 51 mm	65	85	2	75	16729

Assembly profiles

51 - 54 mm

C-profile

BS 5.51

fits all commercial clamps (slit width 11 - 12 mm)

Material: Steel Item No.: 3931

Attach profile with M 6 - DIN 6912 sockethead cap screws.

65

85

2

75

16731

C-rails

fit all commercial clamps (slit width 16 - 17 mm)

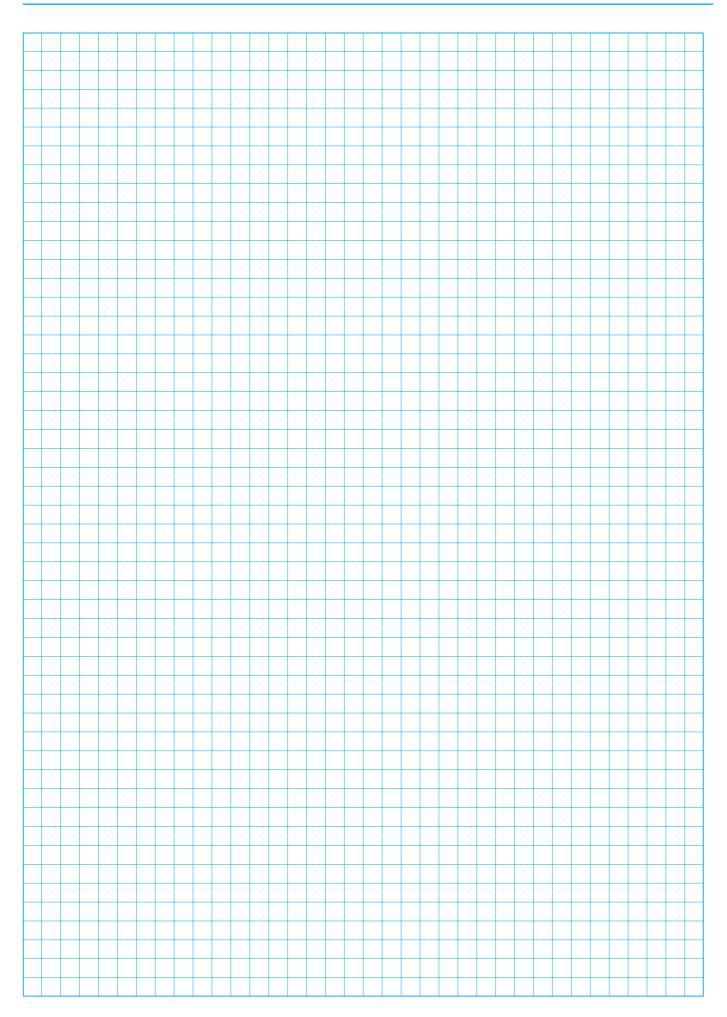
Material:	Aluminium	Steel
Item No.:	3926	3932

Attach profile with M 10 - DIN 6912 sockethead cap screws.

Appendix

- FAX Questionnaire
- Design and Layout Notes
- FAX Order Forms

Fax Enquiry Form For steel cable carriers



Fax No.: +49-271/5801-220 _

To KABELSCHLEPP GMBH	Date:		Pag	e No.: _	No.of	pages:	
Postfach 100654	From:	From:					
D-57006 Siegen	Company	Company:					
Marienborner Straße 75							
D-57074 Siegen							
Diversity 40 074 5004 0							
Phone: +49-271-5801-0	Telefax:	Telefax:		Telex/Email:			
Please submit exact specifications in We would be pleased to submit a cor				ion.			
☐ Please have an applications engi	neer call for an app	pointment!					
☐ Proposal for:	Enquir	y number:					
☐ Cable carriers including	□ zino	c-plated steel	☐ rust and	acid res	istant stair	nless steel	
enclosed designs		NDUFLEX	☐ MOBIFL	EX			
☐ Accessories ☐ support	trays 🗌 gui	de channels	☐ Electric	cables	Strain	relief devices	
We require the following information to	to prepare a propo	sal·					
1.00 Machinery data	to propare a propo	ou					
40 Application							
.20 Environmental conditions							
.21 Ambient operating temperature							
.30 maximum machine travel length			rms:				
.40 max. acceleration/deceleration	· ·	m/s²					
.50 travel speed		m/s	-	—L _S ——	-	→ B →	
.60 travel frequency		times/h		- L	<u>S</u>		
.70 installation situation (drawing/or	utline)					<u> </u>	
.71 max. installation height		mm(+ KR	+		± 1	
.72 max. installation width							
.73 installation variant	EBV						
2.00 Supply cables/hoses							
Type of cables and hoses	Cable	Hose diameter	Number of		Minimum	Cables with	
Talactric nnalim nvar "F"" of caniae	cross section diameter	at operating	pressure oscillations	Weight in kg/m	bend radius	fixed plugs or	
cables of cables (e	e.g. 4x6 mm²)	pressure in mm	per hour	III Kg/III	in mm	terminal fittings	
3.00 Supplementary information:							

Design and Layouts/Drawings KABELSCHLEPP

Fax Order Form For steel cable carriers

Fax No.: +49-271/5801-220__

To KABELSCHLEPP GME	BH Date:	Page No.: _	No. of pag	es:	
Postfach 100654 D-57006 Siegen	From: Company:				
Marienborner Straße 75 D-57074 Siegen		Contact: Department: Phone: Extension: Telefax: Telex/Email:			
Phone: +49-271-5801-0					
We hereby order the following p	roducts:				
ORDER No.:		KABELSCHLEPP Qu			
Item-No.	KABELSCHLEPP Item No. Order description			Price ore tax	
Requested delivery date:		∟ Coi	ntinued, see page	e	
		Seal, signature			

Fax Order Form For steel cable carriers

or steer cable c	Capie Carriers		Fax No. : +49-271/5801-220 _		
	Date:	Page No.:	No.	of pages:	
Item No.	KABELSCHLEPP Item No.		Number	Unit Price	
	Order description			before tax	
Comments:					
		☐ Co	ntinued, see	page	

All rights reserved, especially the right to reproduction, distribution, re-working or translation.

No part of this document may be changed by electronic system, reproduced or distributed without prior written approval from KABELSCHLEPP GMBH.

KABELSCHLEPP GMBH

D-57074 Siegen · Marienborner Straße 75 D-57006 Siegen · P.O. Box 100654 Telephone (0271) 5801-0 · Fax (0271) 5801-220 www.kabelschlepp.de · info@kabelschlepp.de