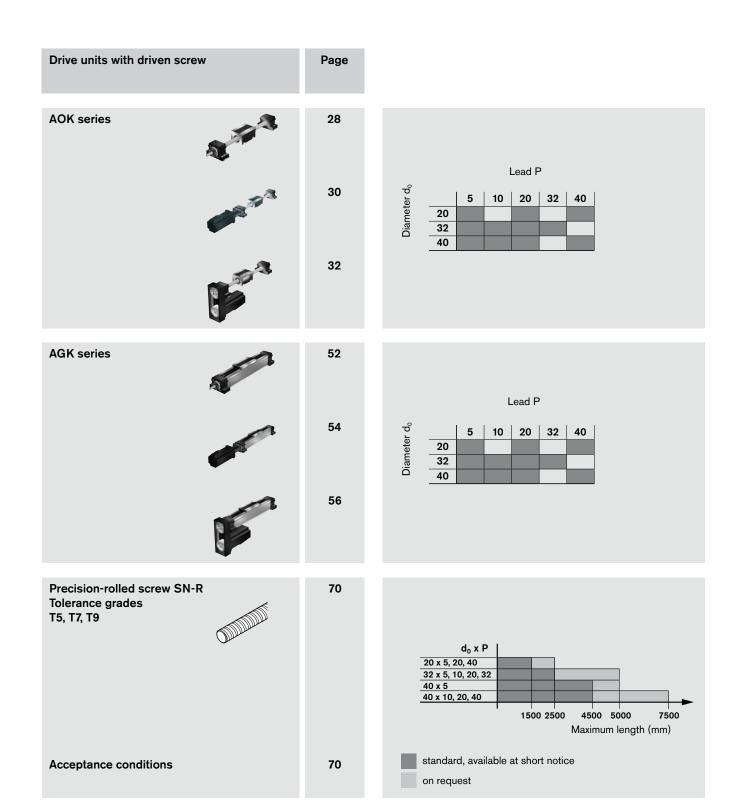
Drive Units with Ball Screw Drives

R310EN 3304 (2007.05)

Linear Motion and Assembly Technologies

Ball Rail Systems
Roller Rail Systems
Linear Bushings and Shafts
Precision Ball Screw Assemblies
Linear Motion Systems
Basic Mechanical Elements
Manual Production Systems
Transfer Systems


www.boschrexroth.com/brl

Drive Units	6
Drive Units with Driven Nut	8
FAR	8
Product Overview, FAR	8
Sizing	10 12
Length Calculations Technical Data and Dimensions	14
Configuration and Ordering Data	18
Drive Units with Driven Screw	20
AOK	20
Product Overview, AOK	20
Sizing	22
Stroke and Length Calculations	24
Technical Data and Dimensions	28
Technical Data and Dimensions, with motor mount, coupling and motor	30
Technical Data and Dimensions,	30
with timing belt side drive and motor	32
Permissible Linear Speed v _{perm.}	34
Permissible Drive Torque M _{perm.}	36
Configuration and Ordering Data	42
AGK Product Overview, AGK	44 44
Sizing	48
Stroke and Length Calculations	50
Technical Data and Dimensions	52
Technical Data and Dimensions,	
with motor mount, coupling and motor Technical Data and Dimensions,	54
with timing belt side drive and motor	56
Permissible Linear Speed v _{perm.}	58
Permissible Drive Torque M _{perm.}	60
Configuration and Ordering Data	66
Technical Notes	68
Technical Notes	68
Acceptance Conditions and Tolerance Grades	70
Preload and Rigidity	72
Seals and Mounting	74
Lubrication	76
Calculations and Examples	79
Service Life Calculation	79
Sizing of the FAR Drive Unit	80
Rough Sizing of the FAR Drive Unit	88
Rough Sizing of the AOK Drive Unit	90
Rough Sizing of the AGK Drive Unit	92
Calculation Example, FAR Drive Unit	94
Calculation Example, AGK Drive Unit	97
Design Calculation Service Form	100
Inquiry and Order Forms	101

Catalog Overview

4

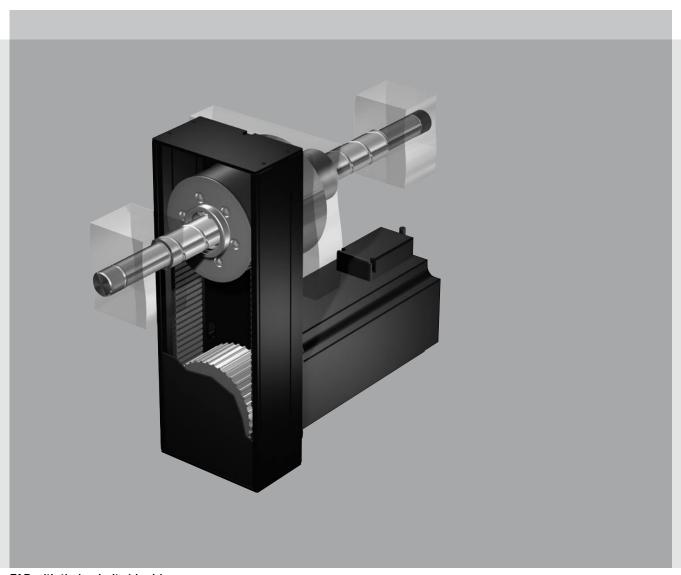
Drive units with driven nut	Page	
FAR series	8	Lead P 10 20 32 40 32 40 50 63 FAR drive unit FAR drive unit with timing belt side drive
Precision-rolled screw SN-R Tolerance grades T5, T7, T9	70	d ₀ x P 32 x 10, 20, 32 40 x 10, 20, 40 50 x 10, 20, 40 63 x 10, 20, 40 1500 2500 4500 5000 7500 Maximum length (mm)
Acceptance conditions	70	on request

Drive units with Driven Nut

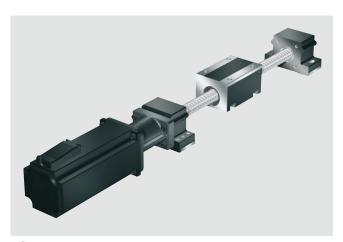
Drive Units

For drives using ball screws – including AOK and AGK – the conventional solution today is to have the screw driven by an AC servo motor either directly or via a toothed belt. The driven screw rotates and the nut performs the required linear movement.

The maximum permissible axial forces (buckling load) and maximum possible linear speeds are frequently limited by the length of the screw and the design of the end bearings. Because of this, the achievable nut speed falls far short of its maximum permissible value (d x n).


Today, a screw's operating speed comes close to its critical speed, especially in high dynamic applications. This, combined with thermal influences, makes it very difficult for physical reasons to implement a high dynamic machine concept. Positioning accuracy may also be limited as a result.

The FAR driven nut takes a different approach.


In this solution, the screw does not rotate, and the ball nut is driven by a toothed belt.

There are no end bearings to limit the speed or rigidity. Undesirable thermal influences can be largely reduced by stretching the screw. Because the screw does not rotate, it is also possible to have a hollow screw and to dissipate the generated heat simply by means of liquid cooling.

If desired, the nut assembly can be delivered as a complete functional unit with timing belt side drive and AC servo motor. With this configuration, even new drive concepts, such as several motors on one screw, can be easily put into practice.

FAR with timing belt side drive

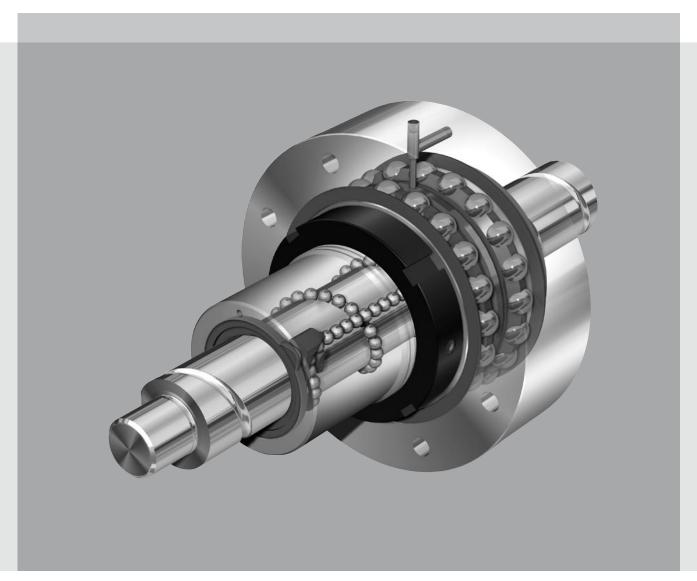
AOK drive unit with motor mount and coupling

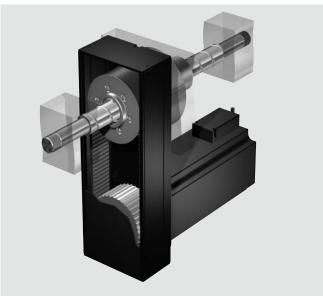
AGK drive unit with motor mount and coupling

Product Overview, FAR

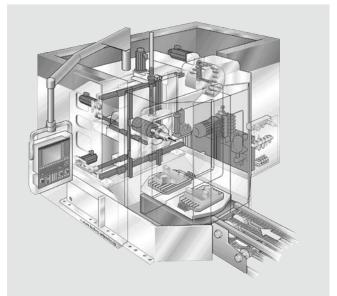
This section contains a complete range of driven nuts.

These products answer customers' wishes for a ready-made solution. The large choice of sizes and screw leads caters for all desired linear speeds and loads. This eliminates the need for complex customer-built constructions.


The driven nut assembly consists of


- a single ball nut
- a two-row angular contact ball bearing with integrated mounting holes and lube port
- a slotted nut

The matching timing belt side drive can be supplied along with the assembly, if required. Suitable AC servo motors and drive controllers are also shown.


User benefits

- Economy through the use of a complete unit consisting of a ball screw, an AC servo motor and a timing belt side drive
- Adaptation to various speeds and loads by means of the screw lead and belt reduction
- Various power classes by using different motor versions
- Low space requirement due to compact design
- Minimal mounting effort by the customer and integral functionality
- Low system costs
- High positioning accuracy
- Can be combined with a railintegrated measuring system (Catalog R310EN 2350) for direct travel measurement in applications with particularly demanding positioning requirements

FAR drive unit with timing belt side drive and motor

Vertical axis of a machining center: Ball screw drive with driven nut and timing belt side drive

Sizing of the FAR Drive Unit

Dimensioning

FAR drive units are sized according to the same general criteria as ball screw assemblies:

Service life calculation

The service life of the drive unit is calculated in a similar way as for a classic ball screw drive.

The average speed and average load are calculated for this purpose (see the "Calculations" section).

Because this is a complete unit, the lowest basic load rating of the nut or bearing must be used for the calculation.

Calculation of the permissible drive torque


The maximum permissible drive torque at the motor journal is expressed in formulas and shown in charts, giving a clear indication of the various factors involved. For each ball screw size and length, the classic Euler buckling load of the screw is shown, as well as the respective end fixity and the specific drive journal used along with the load forces.

Permissible speed and critical speed

The permissible speed of the ball screw is influenced by different factors:

- Screw lead
- Maximum permissible nut speed (d x n value)
- Permissible speed of the end bearings
- Length-dependent critical speed of the screw, although this is no longer a genuine restriction in the version with driven nut and fixed-fixed end fixity. The only significant limitations are when the screw is fixed at one end only. The position of the nut is important in this case, as shown in the charts on the following pages.

A calculation example that shows the interplay of all chosen components for a typical application can be found in the "Calculations and Examples" section.

Service life calculation

The drive unit size can be determined by performing a service life calculation.

In the "Calculations" section, the dynamic load rating given in the table is compared with the loads occurring in the application.

 \mathbf{d}_0 = nominal diameter

P = screw lead (R = right-hand)

 D_w = ball diameter

= number of ball track turns

FAR	Ball screw size	Part number	Load ratings	
size		Nut and bearing assembly	dyn. C	stat. C₀
	d _o x P x D _w - i		(N)	(N)
32	32 x 10R x 3.969 - 5	R2532 301 01	31700	58300
	32 x 20R x 3.969 - 3	R2532 301 11	19700	33700
	32 x 32R x 3.969 - 3	R2532 301 21	19500	34000
40	40 x 10R x 6 - 5	R2532 401 01	61500	109200
	40 x 20R x 6 - 3	R2532 401 31	37900	62800
	40 x 40R x 6 - 3	R2532 401 41	37000	62300
50	50 x 10R x 6 - 6	R2532 501 01	73000	132000
	50 x 20R x 6.5 - 5	R2532 501 31	73000	132000
	50 x 40R x 6.5 - 3	R2532 501 41	46500	85900
63	63 x 10R x 6 - 6	R2532 601 01	88800	197000
	63 x 20R x 6.5 - 5	R2532 601 11	83900	190300
	63 x 40R x 6.5 - 3	R2532 601 21	53400	114100

Length Calculation

The main dimensions can be specified using a simple length calculation.

$$L_{Hmax} = L_{H1} + L_{H2}$$

$$L_C = L_{RV} + L_E$$

for interference contour case 1

$$L_{thr} = L_{Hmax} + L_{C} + L_{N}$$

$$L_{ov} = L_{thr} + 2 x L_{ZF}$$

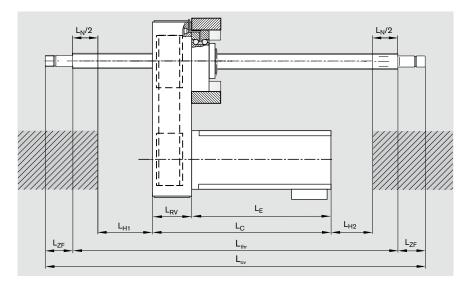
L_c = length of customer attachment or of the motor and timing belt side drive used by Bosch Rexroth

 L_{thr} = thread length

L_N = unusable length; includes the necessary excess travel on the screw

 \mathbf{d}_0 = nominal diameter

P = screw lead (R = right-hand)

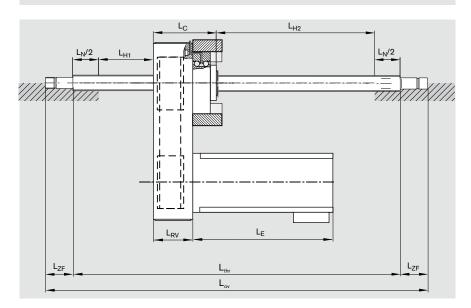

 $\mathbf{D}_{\mathbf{w}} = \text{ball diameter}$

i = number of ball track turns

FAR size	Ball screw size	Dimensions (mm)				
	d _o x P x D _w - i	L _N	L_{ZF}	L ₃	L _{Rv}	L _E
32	32 x 10R x 3.969 - 5	128	108	11	90	313
	32 x 20R x 3.969 - 3					
	32 x 32R x 3.969 - 3					
40	40 x 10R x 6 - 5	160	117	12	90	313
	40 x 20R x 6 - 3					
	40 x 40R x 6 - 3					
50	50 x 10R x 6 - 6	200	145	13	Customer specific	Customer specific
	50 x 20R x 6.5 - 5					
	50 x 40R x 6.5 - 3					
63	63 x 10R x 6 - 6	252	183	20	Customer specific	Customer specific
	63 x 20R x 6.5 - 5					
	63 x 40R x 6,5 - 3					


Interference contour case 1

The motor collides with the customer structure on the right and the timing belt side drive does so on the left, thus limiting the stroke.


Interference contour case 2

Customer structure on the right and timing belt side drive on the left limit the stroke of the driven nut.

Interference contour case 3

The nut unit and the timing belt side drive limit the stroke.

Technical Data and Dimensions

Mounting dimensions of the drive unit without timing belt side drive and motor

Sizes 32 - 63

 Can be lubricated with NLGI Class 2 grease at standstill using the lube port on the bearing outer race

Optional

- Liquid-cooled screw
- Lubrication via the screw

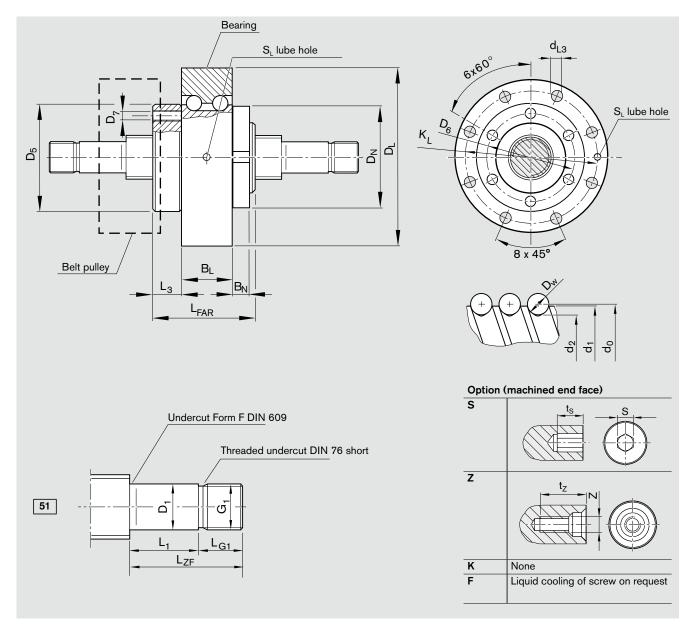
For rigidity, please refer to "Technical Notes."

d₀ = nominal diameter

P = screw lead (R = right-hand)

 D_w = ball diameter

i = number of ball track turns



FAR	Ball screw size	Weight	Mass moment of inertia	Bearing frictional torque	Rigidity ¹⁾	Max. rotary speed ²⁾
size		m _{FAR}	${f J}_{ m rotFAR}$	M _{RL}	R_{G}	n _{max}
	d _o x P x D _w - i	(kg)	(kgm² · 10⁻⁴)	(Nm)	(N/μm)	(min ⁻¹)
32	32 x 10R x 3.969 - 5	5.8	22.5	1.0	377	3000
	32 x 20R x 3.969 - 3	5.9	22.9		278	
	32 x 32R x 3.969 - 3	6.3	25.1		273	
40	40 x 10R x 6 - 5	7.3	42.7	1.2	448	2800
	40 x 20R x 6 - 3	7.5	43.9		332	
	40 x 40R x 6 - 3	8.4	50.7		323	
50	50 x 10R x 6 - 6	8.3	67.6	1.4	556	2700
	50 x 20R x 6.5 - 5	9.1	76.0		525	
	50 x 40R x 6.5 - 3	9.5	79.8		386	
63	63 x 10R x 6 - 6	12.8	139.0	2.3	627	2300
	63 x 20R x 6.5 - 5	13.5	156.4		599	
	63 x 40R x 6.5 - 3	13.9	161.6		461	

¹⁾ Bearing with ball nut at 5% preload

Limited by max. rotary speed of bearing. Bearing preloaded without external operating load. Duty cycle 25%; max. steady state temp. +50 °C

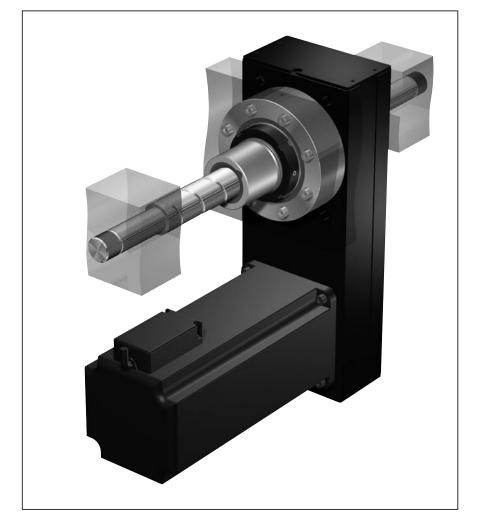
FAR	Scr	ew	Ball screw size	Dimensions (mm)					
size	end	type		BL	B _N	d _{L3}	d,	d ₂	D_1
			d _o x P x D _w - i			+0.3/-0.1			h6
32	51	209	32 x 10R x 3.969 - 5	49	16	8.8	31.0	27.9	20
			32 x 20R x 3.969 - 3						
			32 x 32R x 3.969 - 3]					
40		309	40 x 10R x 6 - 5	49	18	8.8	38.0	33.8	30
			40 x 20R x 6 - 3						
			40 x 40R x 6 - 3						
50		359	50 x 10R x 6 - 6	49	18	8.8	48.0	43.8	35
			50 x 20R x 6.5 - 5					43.3	
			50 x 40R x 6.5 - 3						
63		409	63 x 10R x 6 - 6	60	20	11.0	61.0	56.8	40
			63 x 20R x 6.5 - 5					56.4	
			63 x 40R x 6.5 - 3						

FAR size	Scr	ew I type	Dime	nsions	(mm)											Cente hole	ring	Hex s	ocket
			D₅ h6	D ₆	D ₇	D _∟ -0.018	D _N	G,	Kι	L _{FAR}	L _{G1}	L _{ZF}	L,	L ₃	SL	Z	t _z	S	t _s
32	51	209	80	65	M8	145	75	M20x1	120	77 84 120	31	108	77	11	M6	M6	16	8	8
40		309	93	80	M8	155	92	M30x1.5	130	80 88 142	34	117	83	12	M6	M10	22	10	10
50		359	105	90	M8	165	105	M35x1.5	140	90 132 149	36	145	109	13	M6	M12	28	12	12
63		409	130	110	M10	190	120	M40x1.5	165	100 132 149	36	183	147	20	M6	M16	36	17	17

Technical Data and Dimensions

Mounting dimensions of the FAR drive unit with timing belt side drive and AC servo motor with brake

Sizes 32 and 40


 Can be lubricated with NLGI Class 2 grease at standstill using the lube port on the bearing outer race

Optional

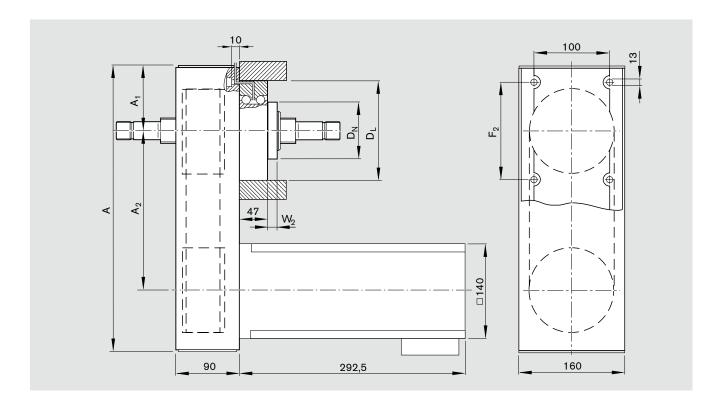
- Liquid-cooled screw
- Lubrication via the screw

More technical data and details of accessories for the servo drive used can be found in the catalogs

- Controllers, Motors, Electrical Accessories (R310EN 2710)
- Synchronous Motors MSK Project Planning Manual (R911296288)
- Rexroth IndraDrive and Rexroth IndraDyn (R911311519)

 \mathbf{d}_0 = nominal diameter

P = screw lead (R = right-hand)


 D_w = ball diameter

i = number of ball track turns

FAR size	Ball screw size	Motor				Mass mome	nt of inertia	Weight (kg)		
		Motor type	Torque (Nm	n)	Max. rotary speed2)	(kgm²)10 ⁻⁴				
			M _{MN} ¹⁾	M _{Mmax} 1)	n _{Mmax}	Motor	Brake	Motor	Brake	
	d _o x P x D _w - i		Rated	Maximum	(min ⁻¹)	J _M	J_{BR}	m _M	\mathbf{m}_{BR}	
32	32 x 10R x 3.969 - 5	MSK 076C	12	43.5	5000	43	3.6	14	1.1	
	32 x 20R x 3.969 - 3	1								
	32 x 32R x 3.969 - 3									
40	40 x 10R x 6 - 5									
	40 x 20R x 6 - 3	1								
	40 x 40R x 6 - 3									

¹⁾ The motor data depend on the control system used.

²⁾ Consider the rotary speed of the ball nut unit.

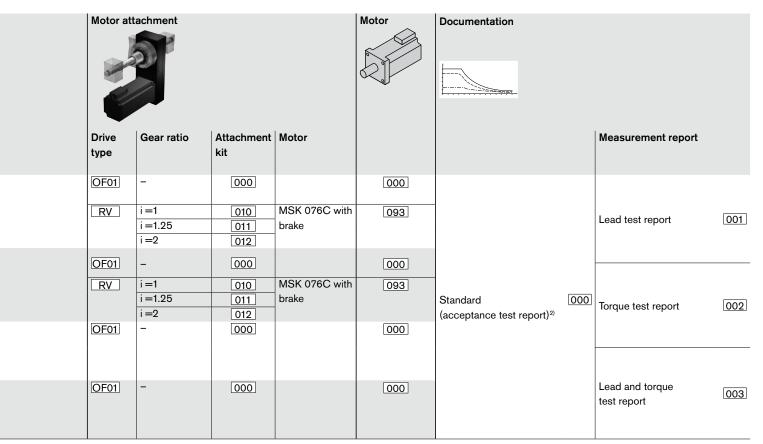
FAR size	Ball screw size	Side drive gear reduction	Weight of timing belt side drive	Reduced mass moment of inertia at motor journal	Permissible torque	Frictional torque ³⁾	Dimen	sions	(mm)				
		i _{RV}	m _{RV}	J _{RV}	M _{RV}		A	$\mathbf{A}_{\scriptscriptstyle{1}}$	A ₂	F ₂	D_N	D_L	W ₂
	d _o x P x D _w - i		(kg)	(kgm²)10 ⁻⁴	(Nm)								
32	32 x 10R x 3.969 - 5	1	8.6	79	56	0.6	390	89	205	136	75	145	
	32 x 20R x 3.969 - 3												24
	32 x 32R x 3.969 - 3												60
	32 x 10R x 3.969 - 5	1.25	7.9	42	44				210				17
	32 x 20R x 3.969 - 3												24
	32 x 32R x 3.969 - 3												60
	32 x 10R x 3.969 - 5	2	7.5	14	28				208				17
	32 x 20R x 3.969 - 3												24
	32 x 32R x 3.969 - 3												60
40	40 x 10R x 6 - 5	1	8.7	84	60	0.6	398	99	205	150	92	155	19
	40 x 20R x 6 - 3												27
	40 x 40R x 6 - 3												81
	40 x 10R x 6 - 5	1.25	8.1	45	48				210				19
	40 x 20R x 6 - 3												27
	40 x 40R x 6 - 3												81
	40 x 10R x 6 - 5	2	7.6	15	28				208				19
	40 x 20R x 6 - 3												27
	40 x 40R x 6 - 3												81

³⁾ Frictional torque at motor journal

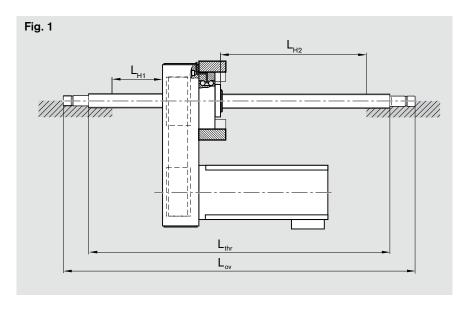
Configuration and Ordering Data

Size	Ball scre	•w							
	d _o x P	Length ¹⁾	Ball nut		Screw				
		(mm) (Fig. 1)	Sealing type	Preload	Tolerance grade	Screw end, left	Screw end, right	Lubrication	
FAR 40 FAR 50 FAR 63	32x10 32x20 32x32 40x10 40x20 40x40 50x10 50x20 50x40 63x10 63x20 63x40	$\begin{array}{c} L_{ov} = \\ L_{thr} = \\ L_{Hmax} = \end{array}$	Standard seal 01 Without seal 00	2% preload 03 3% preload 06 5% preload 02	T5 T7	Centering feature Z None K to DIN 332-D Hex socket S Liquid cooling F (on request)	Centering feature Z None K to DIN 332-D Hex socket S Liquid cooling F (on request)	Anti-corrosion oil 00 Basic lubrication and anti-corrosion oil 01	

¹⁾ Only one length specification necessary


Order example:

Fixed parameters									
Lead direction	right-hand	No. of ball track turns	fixed						
Nut unit	FAR-B-S	Screw	rolled						
Screw end, left		Screw end, right							
Screw end type	51	Screw end type	51						


Variable parameters		
	Selected	Ordering data
FAR size	FAR 40	FAR 40
Ball screw	40 x 20	40 x 20
Length	Overall length 560 mm	L _{ov} = 560
Sealing type	Standard seal	01
Preload	5%	02
Tolerance grade	T5	T5
Screw end, left	Hex socket	S
Screw end, right	Hex socket	S
Lubrication	Basic lubrication and anti-corrosion oil	01
Drive type	With timing belt side drive	RV
Attachment kit	For i = 1.25	011
Motor	MSK 076C with brake	093
Documentation	Lead report	001
	(incl. standard test report)	

When ordering:

Please state the option number given in the box as appropriate (e.g. $\boxed{02}$).

2) Is always supplied

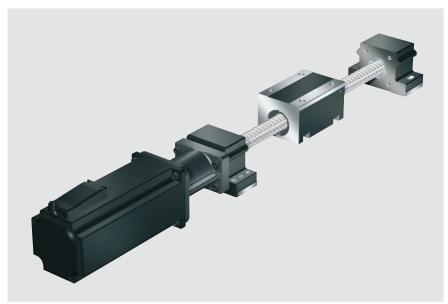
$$\begin{split} L_{Hmax} &= L_{H1} + L_{H2} \\ L_{Hmax} &\text{ depends on the installation conditions; see length calculation} \end{split}$$

Product Overview, AOK

The AOK drive unit is the classic ball screw assembly with pillow blocks and pre-assembled ball nut enclosure.

The drive itself can be supplied along with the unit, if so requested by the customer. These readily available AOK drive units offer users the opportunity to rapidly integrate economical drive solutions with minimal design and manufacturing effort. They combine all the performance characteristics of a classic ball screw drive in one unit. When paired with Rexroth linear guides, they offer machine designers full design freedom for every application.

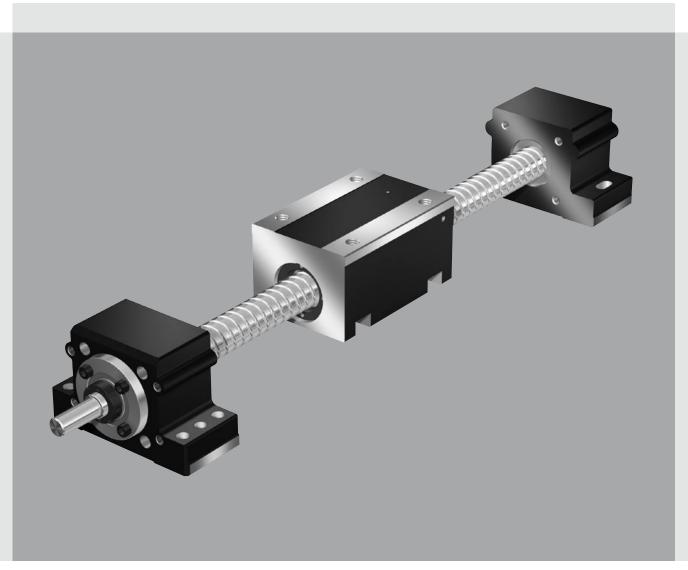
Advantages

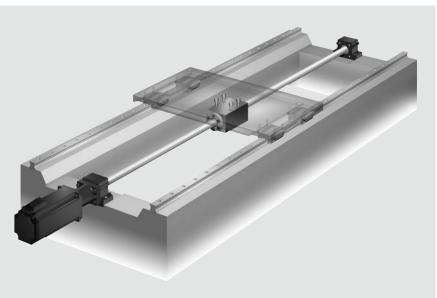

- Freely selectable length (no standard length increments)
- High positioning accuracy and repeatability due to ball screw assembly with zero-backlash nut system
- Easy motor attachment via locating feature and fastening threads on pillow block
- Rapid mounting and easy alignment due to the machined reference edges on the ball nut enclosure and the pillow block units
- High linear speeds thanks to double floating bearing
- Optimal travel performance and high load ratings

Structural design

- Rexroth Precision Ball Screw
 Assembly with screws of various tolerance grades and cylindrical single nut, also available with zero backlash or preloaded
- Ball nut enclosure made of aluminum finished on all sides with reference edges on both sides
- Pillow block units made of robust extruded aluminum profile with reference edges on both sides and mounting holes as well as locating feature for motor mounting

Choice of drive elements


- Motor mount and coupling, preassembled with motor attached
- Timing belt side drive with selectable gear ratios, pre-assembled with motor attached
- Maintenance-free digital AC servo drives with integrated brake and attached feedback


Drive unit with motor mount and coupling

Drive unit with timing belt side drive

Supporting frames can be easily and rapidly built using our proven aluminum profile construction kit. Please refer to catalog "Basic mechanical elements" (MGE 3 842 529 114).

Sizing

AOK drive units are dimensioned according to the same criteria as for ball screw assemblies:

Service life calculation

The service life of the drive unit is calculated in a similar way as for a classic ball screw drive. The average speed and average load are calculated for this purpose (see the "Calculations"

section). Because this is a complete unit, the lowest basic load rating of the nut or bearing must be used for the calculation. The corresponding data is listed in the table opposite (top right).

Permissible linear speed

The permissible speed of the ball screw is influenced by various factors:

- Screw lead
- Maximum permissible nut speed (d x n value)
- Permissible speed of the end bearings
- Length-dependent critical speed of the screw due to screw deflection

The permissible speeds as a function of the drive unit length are shown in charts; see page 40 and following.

These charts make it easy to estimate the attainable speeds.

Permissible drive torque

The maximum permissible drive torque at the motor journal is shown in charts giving a clear indication of the various factors involved; see page 42 and following.

The classic Euler buckling load of the screw is shown for each ball screw size and length, as well as the respective bearing configuration and the specific drive journal used along with the timing belt side drive.

Frictional torques, mass moments of inertia and moved masses

These can be found in the corresponding tables on the following pages.

Calculation example

A calculation example showing the interplay of all chosen components for a typical application can be found in the "Calculations and Examples" section.

AOK drive units are delivered with preassembled MGA-Z ball nut enclosure and with all attachments; see "Configuration and Ordering Data." \mathbf{d}_0 = nominal diameter

P = screw lead (R = right-hand)

 D_w = ball diameter

i = axb

"a" – number of load-carrying turns per thread

"b" – number of load-carrying threads on the screw

MGA-Z Ball nut enclosure with cylindrical single nut

AOK size	Part number of	AOK load ra	atings (N)	Weight of ball nut
d _o x P x D _w - i	the ball nut used	dyn. C	stat. C ₀	enclosure with nut (kg)
20 x 5R x 3 - 4	R1512 112 43	14300	21500	1.31
20 x 20R x 3.5 - 3	R1512 172 07	13300	18800	1.54
20 x 40R x 3.5 - 1x4	R2522 120 01	14000	26200	1.46
32 x 5R x 3.5 - 4	R1512 310 52	21600	40000	2.69
32 x 10R x 3.969 - 5	R1512 340 52	26000	47000	2.90
32 x 20R x 3.969 - 3	R1512 370 52	19700	33700	2.97
32 x 32R x 3.969 - 3	R1512 390 52	19500	34000	3.28
40 x 5R x 3.5 - 5	R1512 412 21	29000	64000	5.14
40 x 10R x 6 - 4	R1512 440 12	29000	64000	5.20
40 x 20R x 6 - 3	R1512 470 12	29000	62800	5.45
40 x 40R x 6 - 3	R1512 490 52	29000	62300	6.17

Further suitable ball nut types, e.g. flanged single nuts and associated steel nut housings, can be found in the Precision Ball Screw Assemblies catalog.

The many combinations available can also be used in the drive units, but the ball nuts would be delivered unassembled. Please consult us. For calculation purposes, the lowest load rating of the ball nut or bearing must be used in these cases.

Example: FSZ-E-S Single nut with flange, ECOplus series

Size	Part number	Load ratings1) (N)
$d_0 \times P \times D_W - i$	Ball nut	dyn. C	stat. C ₀
20 x 5R x 3 - 4	R1502 110 41	14300	21500
32 x 5R x 3.5 - 4	R1502 310 41	21600	40000
32 x 10R x 3.969 - 5	R1502 340 41	26000	47000
32 x 20R x 3.969 - 2	R1502 370 41	13500	21800
40 x 5R x 3.5 - 5	R1502 410 41	29000	64000
40 x 10R x 6 - 4	R1502 440 41	29000	64000
40 x 20R x 6 - 3	R1502 470 41	29000	62800

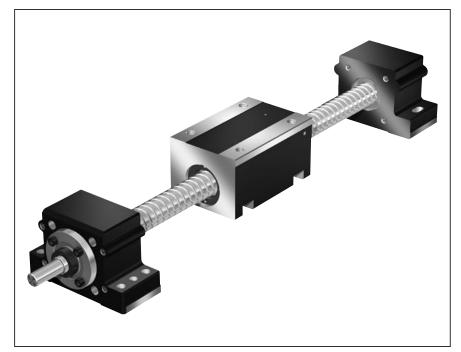
¹⁾ Load ratings with bearing SEC-F

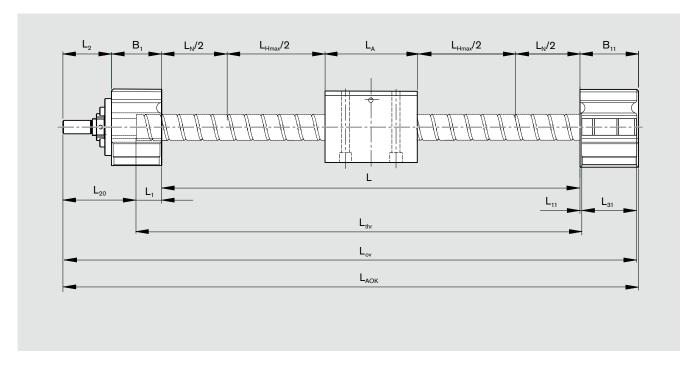
Example: FEP-E-S Single nut with flange, Speed series

Size	Part number	Load ratings ¹⁾ (N)
d _o x P x D _w - i	Ball nut	dyn. C	stat. C _o
20 x 40R x 3.5 - 1 x 4	R2522 100 11	14000	26200
32 x 32R x 3.969 - 1.2 x 4	R2522 300 01	26000	47000

¹⁾ Load ratings with bearing SEC-F

Stroke and Length Calculations


The main dimensions can be specified using a simple length calculation.


$$L = L_{Hmax} + L_A + L_N$$

$$L_{AOK} = L + L_2 + B_1 + B_{11}$$

 L_A = length of the ball nut enclosure L_N = unusable length; includes the

necessary excess travel on the screw

AOK size	Ball screw size	Dimensions (mm)								
	d _o x P	L _A	L _N	B ₁	B ₁₁	L,	L ₂	L ₁₁	L ₂₀	L ₃₁
20	20 x 5/20/40	100	80	60	60	42	42	4	60	47
32	32 x 5/10/20/32	150	128	60	70	40	58	4	78	60
40	40 x 5/10/20/40	180	160	65	80	45	73	4	93	68

= nominal diameter

= screw lead (right-hand)

Example of a stroke and length calculation for AOK 32x20

The required stroke is 1650 mm.

 $= L_{Hmax} + L_A + L_N$ = 1650 mm + 150 mm + 128 mm L

= 1928 mm

 $L_{AOK} = L + L_2 + B_1 + B_{11}$

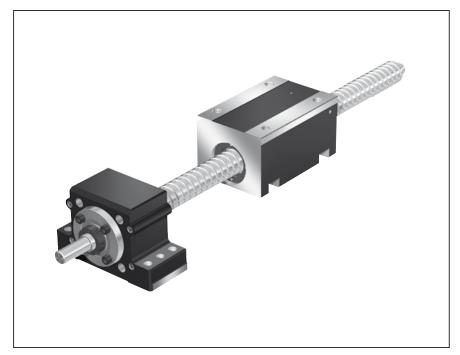
 $L_{AOK} = 1928 \text{ mm} + 58 \text{ mm} + 60 \text{ mm} + 70 \text{ mm}$

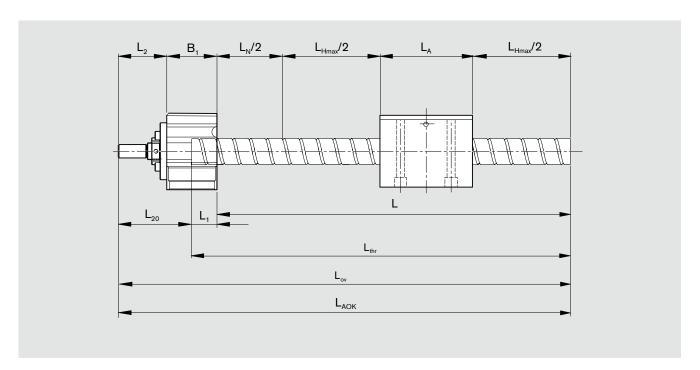
 $L_{AOK} = 2116 \text{ mm}$

Stroke and Length Calculations

Screw with free shaft end

The main dimensions can be specified using a simple length calculation.


$$L \quad = \ L_{Hmax} + L_A + L_N/2$$


$$L_{AOK} = L + L_2 + B_1$$

L_{Hmax}= maximum stroke required by customer

L_A = length of the ball nut enclosure L_N = unusable length; includes the necessary excess travel on the

necessary excess travel on the screw

4	OK size	Ball screw size	Dimensions (mm)								
		d₀ x P	L _A	L _{thr max}	L _N	B ₁	L,	L_2	L ₁₁	L ₂₀	L ₃₁
2	20	20 x 5/20/40	100	600	80	60	42	42	4	60	47
3	32	32 x 5/10/20/32	150	1000	128	60	40	58	4	78	60
4	10	40 x 5/10/20/40	180	1200	160	65	45	73	4	93	68

d₀ = nominal diameter

= screw lead (right-hand)

 $L_{\scriptscriptstyle N}$ for screw with free shaft end: 1/2 value

Example of a stroke and length calculation for AOK 32x20

The required stroke is 700 mm.

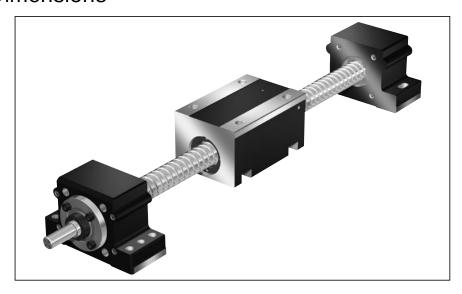
 $= L_{Hmax} + L_A + L_N/2$ = 700 mm + 150 mm + 128 mm/2

= 914 mm

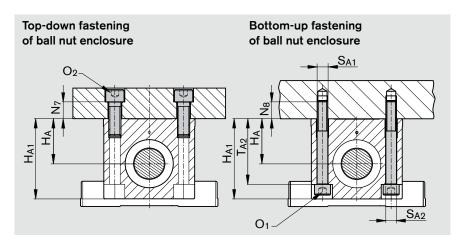
 $L_{AOK} = L + L_2 + B_1$

 $L_{AOK} = 914 \text{ mm} + 58 \text{ mm} + 60 \text{ mm}$

 $L_{AOK}\ =\ 1032\ mm$


Technical Data and Dimensions

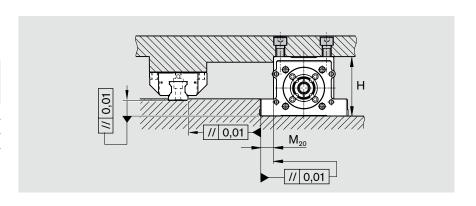
The mounting dimensions for the drive unit and the tolerance specifications for the adjoining structure are given below. For inquiries, there are corresponding CAD files available in AutoCAD format.

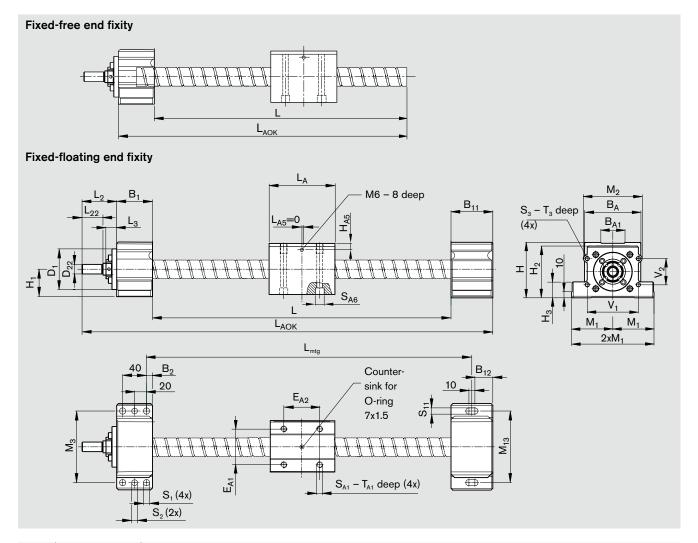

$$L_{mtg} = L + B_2 + (B_{11}/2)$$

$$L_{mtg} = L_{AOK} - L_2 - B_1 + B_2 - (B_{11}/2)$$

 L_{mtg} = mounting length

Connection dimensions for attachments

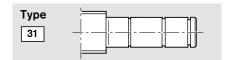



d₀ = nominal diameterP = screw lead (right-hand)

AOK	Ball screw size	Dim	imensions (mm)									
size	d₀ x P	H₄	H _{A1}	N ₇	N ₈	O ₁	O ₂	S _{A1}	S _{A2}	T_{A2}		
20	20x5/20/40	44	75	20	19	M8x75	M10x35	M10	8.5	63		
32	32x5/10/20/32	49	80	25	22	M10x85	M12x40	M12	10.5	66		
40	40x5/10/20/40	59	105	30	22	M14x110	M16x45	M16	14.5	86		
32									1111			

Parallelism of customer attachment, pillow blocks and rail guides:

Ball screw size	Dimensions	(mm)
	н	M ₂₀
d _o x P	±0.01	±0.01
20x5/20/40	85	35
32x5/10/20/32	95	22.5
40x5/10/20/40	115	30



AOK	Ball screw size	Dimens	mensions (mm)												
size		B ₁	B ₂	B ₁₁	B ₁₂	B _A	B _{A1}	D ₁	D ₂₂	E _{A1}	E _{A2}	H ₁	H ₂	H₃	H_{A5}
	d _o x P					±0.02		-0.013	h7				±0.15		
20	20x5/20/40	60	10.0	60	25	75	40	55	10	55	60	41	81	28	15
32	32x5/10/20/32	60	10.0	70	30	100	50	68	16	75	100	46	91	28	16
40	40x5/10/20/40	65	12.5	80	35	120	60	80	25	90	120	56	111	33	18

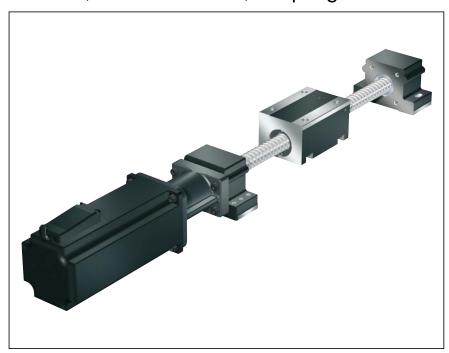
AOK	Ball screw size	visize Dimensions (mm)																	
size		L ₂	L ₃	L ₂₂	LA	M ₁	M ₂	М _з	M ₁₃	Sı	S ₂	S₃	S ₁₁	S _{A1}	S _{A6}	T ₃	T _{A1}	V ₁	V ₂
	d _o x P					±0.015													
20	20x5/20/40	42	15	25	100	72.5	80	120	120	10.5	9.7	M8	10.5	M10	18	15	20	66	50
32	32x5/10/20/32	58	18	35	150	72.5	103	120	120	10.5	9.7	M8	10.5	M12	20	15	20	90	46
40	40x5/10/20/40	73	20	50	180	90.0	116	150	150	13.0	11.7	M10	13.0	M16	26	20	25	100	65

Screw ends:

Technical Data and Dimensions, w/motor mount, coupling and motor

The dimensions for the drive unit version with motor mount, coupling and motor are given below. For inquiries, there are corresponding CAD files available in AutoCAD format.

More technical data and details of accessories for the MSM servo drive used can be found in the catalogs


- ARS, EcoDrive Cs (R310D0 2725)
- EcoDrive Cs Project Planning Manual (R911295757)
- EcoDrive Cs Drive Control Units MGP 01 VRS (R911296548)

More technical data and details of accessories for the MSK servo drives used can be found in the catalogs

- Controllers, Motors, Electrical Accessories (R310EN 2710)
- Synchronous Motors MSK Project Planning Manual (R911296288)
- Rexroth IndraDrive and Rexroth IndraDyn (R911311519)

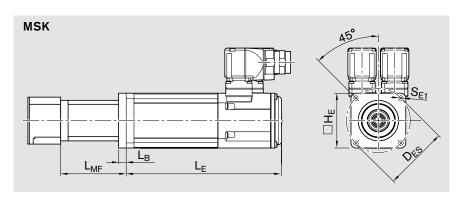
d₀ = nominal diameterP = screw lead (right-hand)

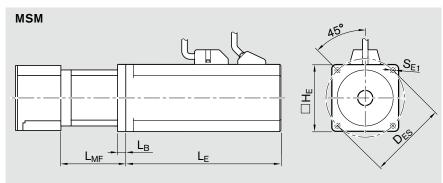
Frictional torques at motor journal

AOK size	Ball screw size	Frictional torques at motor journal
		M _{RS}
	d _o x P	(Nm)
20	20x5	0.40
	20x20	0.50
	20x40	0.60
32	32x5	0.80
	32x10	0.90
	32x20	0.90
	32x32	1.00
40	40x5	1.20
	40x10	1.50
	40x20	1.30
	40x40	1.60

Technical data of coupling

AOK	Ball screw size	Motor type	Rated	Mass moment	Weight
size			torque	of inertia	
			M _{KN}	J _K	m_{κ}
	d _o x P		(Nm)	(kgm² 10 ⁻⁴⁾	(kg)
20	20x5/20/40	MSM 040B with/without brake	14.5	0.63	0.265
		MSK 040C with/without brake	19.0	0.60	0.260
		MSK 050C with/without brake	50.0	2.00	0.700
32	32x5/10/20/32	MSK 060C with/without brake	50.0	2.00	0.700
		MSK 076C with brake	98.0	3.90	0.900
40	40x5/10/20/40	MSK 076C with brake	98.0	3.90	0.900


Technical data of motors


Ambient temperature $\rm T_{\rm amb}$ 0 to +45 °C; protection class IP 65

Motor		MSM 040B	MSK 040C	MSK 050C	MSK 060C	MSK 076C
Part number with brake		R3471 075 03	R3471 087 03	R3471 089 03	R3471 091 03	R3471 093 03
Part number without brake		R3471 074 03	R3471 086 06	R3471 088 03	R3471 090 03	_
Maximum speed n _{max}	(min ⁻¹)	4500	7500	6000	6000	5000
Rated torque M _{MN}	(Nm)	2.4	2.7	5.0	8.0	12.0
Maximum torque M _{Mmax} 1)	(Nm)	7.1	8.1	15.0	24.0	43.5
Motor mass moment of inertia $J_{\scriptscriptstyle M}$	(10 ⁻⁴ kgm ²)	0.67	1.4	3.3	8.0	43.0
Brake mass moment of inertia J _{Br}	(10 ⁻⁴ kgm ²)	0.08	0.23	1.07	0.59	3.60
Brake holding torque M _{Br}	(Nm)	2.45	4.00	5.00	10.00	11.00
Mass of motor m _M	(kg)	3.1	3.6	5.4	8.4	14.0
Mass of brake m _{Br}	(kg)	0.7	0.3	0.7	0.4	1.1

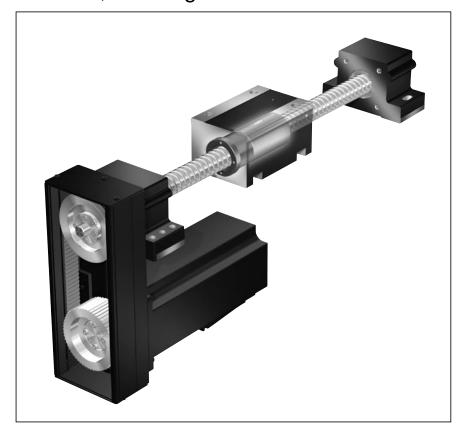
¹⁾ Depends on controller used

Motor mount and motor dimensions

AOK size	Ball screw size	ize Motor type Dimensions (mm)									
			D _{ES}	H _E	L _B		L _E	L _{MF}	S _{E1}		
	d _o x P					without brake	with brake				
20	20x5/20/40	MSM 040B	90	80	17	157.5	191.5	90	6.0		
		MSK 040C	95	82	15	185.5	215.5	90	6.6		
		MSK 050C	115	98	17	203.0	233.0	115	9.0		
32	32x5/10/20/32	MSK 060C	130	116	12	226.0	259.0	125	9.0		
		MSK 076C	165	140	17	-	292.5	133	11.0		
40	40x5/10/20/40	MSK 076C	165	140	17	_	292.5	140	11.0		

Technical Data and Dimensions, w/timing belt side drive and motor

The dimensions for the drive unit version with timing belt side drive and motor are given below. For inquiries, there are corresponding CAD files available in AutoCAD format.


More technical data and details of accessories for the MSM servo drive used can be found in the catalogs

- ARS, EcoDrive Cs (R310D0 2725)
- EcoDrive Cs Project Planning Manual (R911295757)
- EcoDrive Cs Drive Control Units MGP 01 VRS (R911296548)

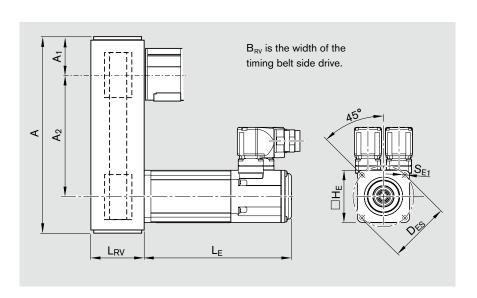
More technical data and details of accessories for the MSK servo drives used can be found in the catalogs

- Controllers, Motors, Electrical Accessories (R310EN 2710)
- Synchronous Motors MSK Project Planning Manual (R911296288)
- Rexroth IndraDrive and Rexroth IndraDyn (R911311519)

d₀ = nominal diameter
 P = screw lead (right-hand)
 i_{RV} = gear reduction of timing belt side drive

Technical data of timing belt side drive

AOK size	Ball screw size	Motor type	Gear	Reduced moment of inertia	Permissible torque	Frictional torque		
			ratio	J _{RV}				
	d₀ x P		i _{RV}	(kgm ² 10 ⁻⁴)	(Nm)	(Nm)		
20	20x5	MSM 040B	1	0.024	2.1	0.4		
	20x20				3.6			
	20x40				4.1]		
	20x5	MSK 040C		0.024	2.1			
	20x20				3.6			
	20x40				4.1			
	20x5	MSK 050C		0.140	2.3	0.5		
	20x20				4.3	1		
	20x40				5.0			
32	32x5	MSK 060C	1	0.140	12.0	0.5		
	32x10/20/32				19.0			
	32x5		2	0.026	6.0			
	32x10				11.0			
	32x20/32				13.0			
40	40x5	MSK 076C	1	0.778	26.0	0.6		
	40x10				52.0	-		
	40x20				67.0			
	40x40				67.0			
	40x5		2	0.12	13.0			
	40x10				26.0	1		
	40x20				33.5	1		
	40x40				33.5	1		

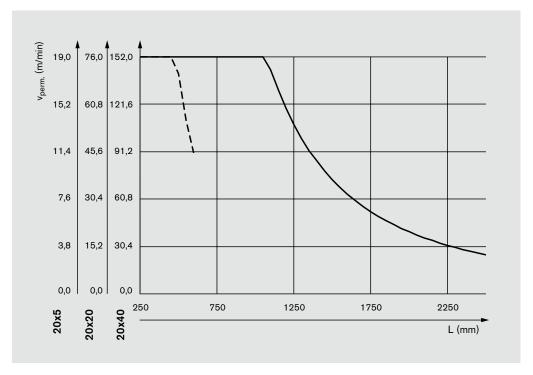

Technical data of motors

Ambient temperature $T_{\mbox{\tiny amb}}$ 0 to +45 °C; protection class IP 65

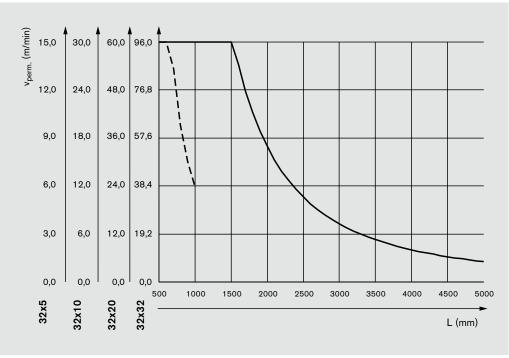
Motor		MSM 040B	MSK 040C	MSK 050C	MSK 060C	MSK 076C
Part number with brake		R3471 075 03	R3471 087 03	R3471 089 03	R3471 091 03	R3471 093 03
Part number without brake		R3471 074 03	R3471 086 06	R3471 088 03	R3471 090 03	_
Maximum speed n _{max}	(min ⁻¹)	4500	7500	6000	6000	5000
Rated torque M _{MN}	(Nm)	2.4	2.7	5.0	8.0	12.0
Maximum torque M _{Mmax} 1)	(Nm)	7.1	8.1	15.0	24.0	43.5
Motor mass moment of inertia J _M	(10 ⁻⁴ kgm ²)	0.67	1.4	3.3	8.0	43.0
Brake mass moment of inertia J _{Br}	(10 ⁻⁴ kgm ²)	0.08	0.23	1.07	0.59	3.60
Brake holding torque M _{Br}	(Nm)	2.45	4.00	5.00	10.00	11.00
Mass of motor m _M	(kg)	3.1	3.6	5.4	8.4	14.0
Mass of brake m _{Br}	(kg)	0.7	0.3	0.7	0.4	1.1

¹⁾ depends on controller used

Dimensions of motors and timing belt side drive



AOK size	Ball screw size	Motor type	Dimensions (mm)										Weight	
			Α	A ₁	A_2		B _{RV}	D_{ES}	H _E	L _E		\mathbf{L}_{RV}	S _{E1}	m _{RV}
	d₀ x P				i=1	i=2				without brake	with brake			(kg)
20	20x5/20/40	MSM 040B	231	47.5	122.5	-	88	90	80	157.5	191.5	51	6.0	on req.
		MSK 040C	231	47.5	122.5	-	88	95	82	185.5	215.5	51	6.6	on req.
		MSK 050C	287	66.0	155.0	-	116	115	98	203.0	233.0	56	9.0	on req.
32	32x5/10/20/32	MSK 060C	300	59.0	165.0	162	116	130	116	226.0	259.0	66	9.0	on req.
40	40x5/10/20/40	MSK 076C	409	77.0	240.0	238	160	165	140	_	292.5	90	11.0	on req.


Permissible Linear Speed $v_{\text{perm.}}$

AOK 20, AOK 32, AOK 40

AOK size 20


AOK size 32

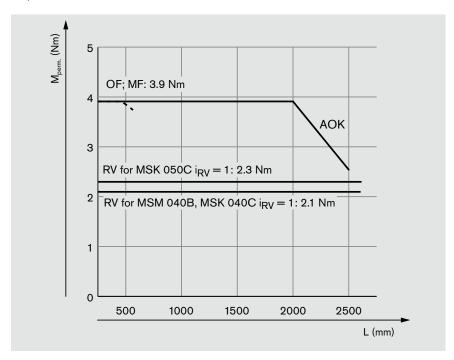
Screw with fixed-floating end fixity

Screw with fixed-free end fixity

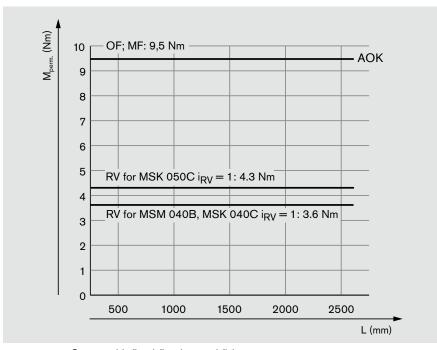
AOK size 40

For 40x5, only up to length 5000 mm

Screw with fixed-floating end fixity

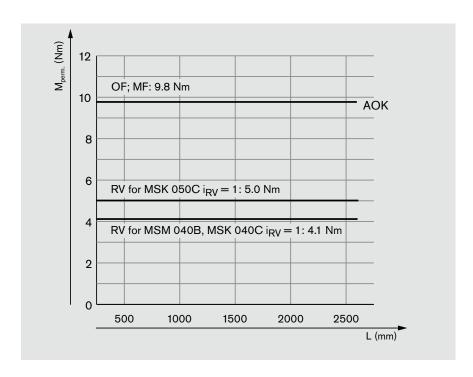

Screw with fixed-free end fixity

Permissible drive torque $M_{\text{perm.}}$


AOK 20

The torque must be read off from the curve for the specific drive type, OF (w/o motor mount), MF (with motor mount), or RV (timing belt side drive).

Ball screw size 20x5

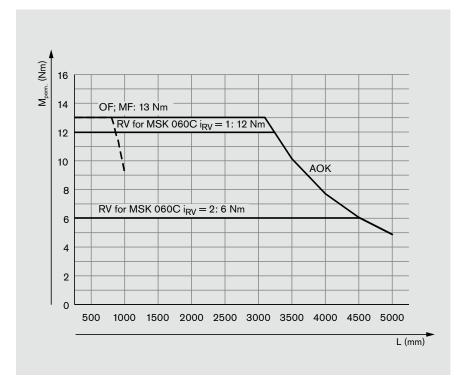

Ball screw size 20x20



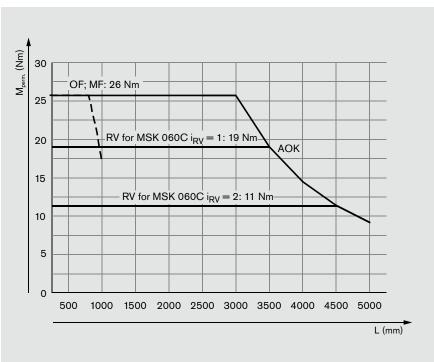
Screw with fixed-floating end fixity

Screw with fixed-free end fixity

Ball screw size 20x40

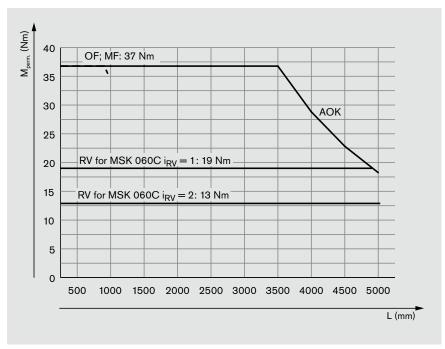

Screw with fixed-floating end fixityScrew with fixed-free end fixity

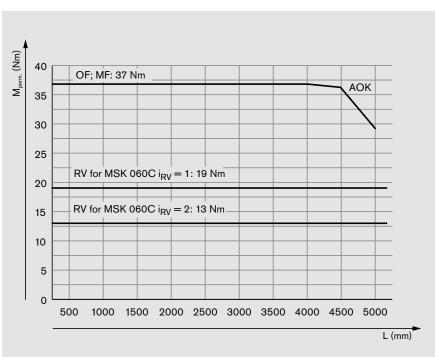
Permissible drive torque M_{perm.}


AOK 32

The torque must be read off from the curve for the specific drive type, OF (w/o motor mount), MF (with motor mount), or RV (timing belt side drive).

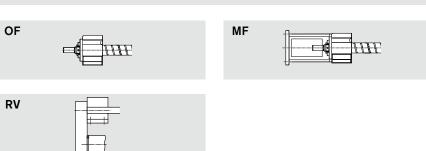
Ball screw size 32x5


Ball screw size 32x10


Screw with fixed-floating end fixity

Screw with fixed-free end fixity

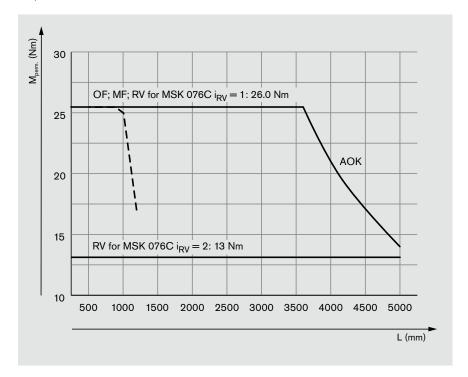
Ball screw size 32x20



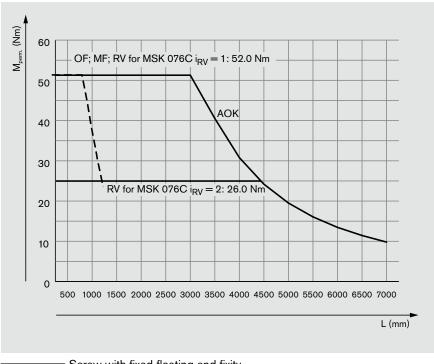
Ball screw size 32x32

Screw with fixed-floating end fixity

Screw with fixed-free end fixity

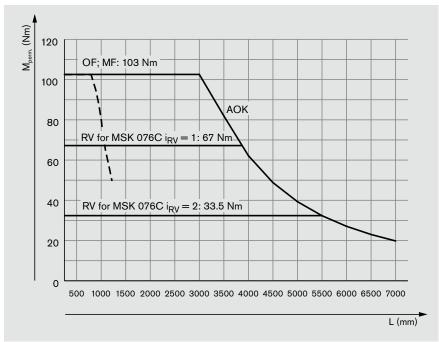


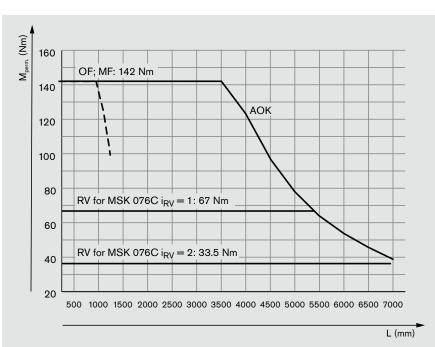
Permissible drive torque M_{perm.}


AOK 40

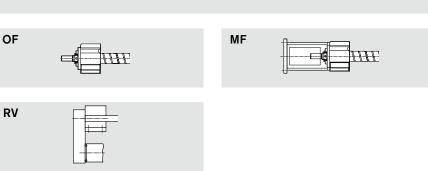
The torque must be read off from the curve for the specific drive type, OF (w/o motor mount), MF (with motor mount), or RV (timing belt side drive).

Ball screw size 40x5


Ball screw size 40x10


Screw with fixed-floating end fixity

Screw with fixed-free end fixity


Ball screw size 40x20

Ball screw size 40x40

- Screw with fixed-floating end fixity
- Screw with fixed-free end fixity

Configuration and Ordering Data

Size	Ball so	rew						
	d _o x P	Length¹) (mm)	Ball nut		Screw			
		(Fig. 1, Fig. 2)	Sealing type	Preload	Tolerance grade	Right side Screw end type	Lubrication	
AOK 20	20x5 20x20 20x40	L =		Standard backlash	00	AOK with fixed-floating end fixity		
AOK 32	32x5 32x10 32x20 32x32	LAOK = LHmax = Lov = Lthr =	Reinforced seal Low-friction seal ³⁾	Reduced backlash 2% preload 3% preload 3% preload 20	01 T5 03 T7 06 T9	AOK with fixed-free end fixity	Basic lubrication and anti-corrosion oil Anti-corrosion oil	
AOK 40	40x5 40x10 40x20 40x40							

¹⁾ Only one length specification necessary

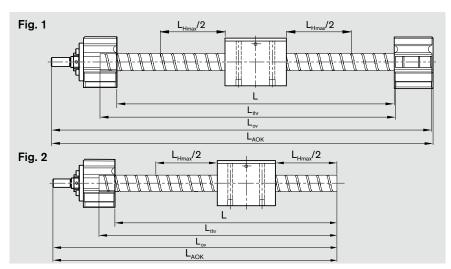
2) Not possible for AOK 20x40

Order example:

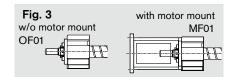
Fixed parameters			
Lead direction	right-hand	No. of ball track turns	fixed
Ball nut	ZEM-E-S	Ball nut enclosure	MAG-Z
Screw	rolled		
Left-hand bearing	SEC-F	Right-hand bearing	SEC-L (for fixed-floating end fixity)
Screw end type	81	Screw end type	31
End face	K	End face	κ

Variable parameters		
	Selected	Ordering data
Size	AOK 20	AOK 20
Ball screw	20x20	20x20
Length	Overall length 350 mm	$L_{ov} = 350$
Sealing type	Standard seal	01
Preload	Reduced backlash	01
Screw tolerance grade	T5	T5
Screw end type, right-hand side	Fixed-floating end fixity	31
Lubrication	Basic lubrication, anti-corrosion oil	01
Drive type	with motor mount	MF01
Attachment kit for motor	MSM 040B with brake	006
Motor	MSM 040B with brake	075
Documentation	Torque test report	002
	(incl. standard test report)	

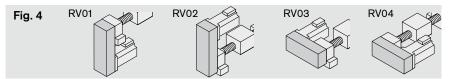
When ordering:


Please state the option number given in the box as appropriate (e.g. $\boxed{01}$).

³⁾ Not possible for AOK 20


Motor attachment				Motor	Documentation		
Drive type	Gear	Attachment kit	Motor				
(Fig. 3, Fig. 4)	ratio					Measurement report	
OF01		000		000			
MF01		006	MSM 040B oB5)	074			
			MSM 040B mB ⁶⁾	075			
		002	MSK 040C oB	086			
			MSK 040C mB	087		Lead test report	001
		007	MSK 050C oB	088		·	
			MSK 050C mB	089			
RV01	i =1	032	MSM 040B oB	074			
RV02			MSM 040B mB	075			
RV03		030	MSK 040C oB	086			
RV04			MSK 040C mB	087			
		023	MSK 050C oB	088	Standard		
			MSK 050C mB	089	(acceptance 000		
OF01		000		000	test report)4)	Torque test report	002
MF01		003	MSK 060C oB	090		Torquo toot roport	002
			MSK 060C mB	091			
		002	MSK 076C mB	093			
RV01 RV02	i =1	023	MSK 060C oB	090			
RV03 RV04			MSK 060C mB	091			
	i =2	024					
OF01		000		000		Lead and torque	003
MF01		002	MSK 076C mB	093		test report	
RV01 RV02	i=1	023		_			
RV03 RV04	i =2	024					

- 4) Is always supplied
- 5) oB = without brake
- 6) mB = with brake


Lengths

Motor attachment / Attachment kit

Timing belt side drive

Product Overview, AGK

The AGK drive unit is additionally provided with an enclosure and sealing strip. Optional traveling screw supports allow maximum speeds even over long strokes. These readily available AGK drive units offer users the opportunity to rapidly integrate economical drive solutions with minimal design and manufacturing effort. Maximum linear speed, protection from environmental influences and reliable operation are all optimally combined into one unit.

When paired with Rexroth linear guides, they offer machine designers full design freedom for every application.

Advantages

- Optimal sealing with steel or polyurethane sealing strip
- Traveling screw supports for maximum linear speeds in horizontal operation
- Optimal travel performance, high load ratings, high positioning and repeatability accuracy due to preloaded Rexroth precision ball nuts for demanding positioning applications

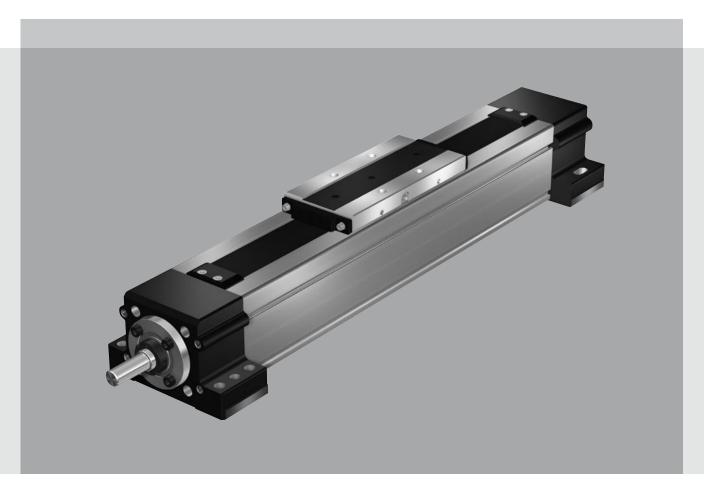
- Rapid mounting and easy alignment of the drive unit due to the machined reference edge on the pillow block unit
- High linear speeds thanks to double floating bearing
- Overall length of the AGK drive unit is freely selectable (no fixed length increments)
- Easy motor attachment via locating feature and fastening threads

Structural design

- Rexroth Precision Ball Screw Assembly with screws of various tolerance grades and cylindrical single nut, also available with zero backlash or preloaded
- Variable number of optional screw supports, to increase the maximum linear speed even with long strokes (critical speed)
- Steel or polyurethane sealing strip combined with aluminum extrusion profile encapsulation

- Ball nut enclosure made of aluminum extrusion profile finished on all sides with reference edges on both sides
- Pillow block units made of robust extruded aluminum profile with reference edges on both sides and mounting holes as well as locating feature for motor mounting

Choice of drive elements


- Motor mount and coupling, preassembled with motor attached
- Timing belt side drive with selectable gear ratios, pre-assembled with motor attached
- Maintenance-free digital AC servo drives with integrated brake and attached feedback

Drive unit with motor mount and coupling

Drive unit with timing belt side drive

Application examples

The table is supported symmetrically on two rail guides with four runner blocks. The ball nut enclosure is located at the top. The sealing strip ensures extensive protection of the unit. The optional traveling screw supports allow very high linear speeds even over long strokes. Motor attachments can be installed in the desired orientation for optimal functionality or to save space.

Supporting frames can be easily and rapidly built using our proven aluminum profile construction kit. Please refer to catalog "Basic Mechanical Elements" (MGE 3 842 529 114).

Depending on the application requirements, the ball nut enclosure can also be at the side instead of the top. Interesting combinations with the rail guides are also possible.

Product Overview

Patented screw support

The patented screw support elegantly solves the problem of the critical speed in horizontal ball screw applications.

If the screw is not supported, a longer stroke normally means a reduction in the critical speed and hence the permissible linear speed, corresponding to the square of the added length. Ball screws therefore come up against their physical limitations, which is particularly inconvenient in applications where high speeds could help to achieve shorter machine cycle times.

These limits can be very effectively extended with suitable supports for the rotating screw. Up to now, however, there were no readily available practical solutions, and it was the responsibility of the customer to implement such designs.

With this product, Rexroth offers a solution that truly deserves the name "drive unit" because all of the design details of this system have been engineered and implemented as elements in a modular structure.

Operating principle of the screw support (SPU) in horizontal operation:

The screw support motion is triggered by the movement of the ball nut along the screw. Screw supports are used in pairs. Depending on the application, one, two or three pairs may be necessary. When the ball nut moves out of the central position, the screw supports are pushed together in the direction of movement, while those behind the nut are positioned at predetermined locations along the travel range. Even when the nut is at the end of its stroke, the screw will be supported radially at several points along its length.

Since the unsupported length between two screw supports is relatively short, the critical speed can be very effectively increased. As a result, real restrictions of the maximum possible linear speed are practically eliminated.

In vertical operation, a further benefit is offered by the pillow blocks. The floating bearings in the pillow blocks contain two deep-groove ball bearings which, in terms of the critical speed, act almost like a fixed bearing, but without exerting any substantial stretching forces on the screw or the machine.

Sizing

AGK drive units are dimensioned according to the same criteria as for ball screw assemblies:

Service life calculation

The service life of the drive unit is calculated in a similar way as for a classic ball screw drive. The average speed and average load are calculated for this purpose (see the "Calculations"

section). Because this is a complete unit, the lowest basic load rating of the nut or bearing must be used for the calculation. The corresponding data is listed in the table opposite.

Permissible linear speed

The permissible speed of the ball screw is influenced by various factors:

- Screw lead
- Maximum permissible nut speed (d x n value)
- Permissible speed of the end bearings
- Length-dependent critical speed of the screw due to screw deflection. By using screw supports (SPU) for longer lengths, it is possible to increase the critical speed because the screw supports function like additional floating bearings.

The permissible speeds as a function of the drive unit length and the number of screw supports are shown in charts on page 64 and following. These charts make it easy to estimate the attainable speeds. It should be noted that screw supports are only used in horizontal applications.

Permissible drive torque

The maximum permissible drive torque at the motor journal is shown in charts giving a clear indication of the various factors involved; see page 66 and following.

The classic Euler buckling load of the screw is shown for each ball screw size and length, as well as the respective bearing configuration and the specific drive journal used along with the timing belt side drive.

Vertical mounting

In vertical applications, screw supports cannot be used because of the system design.

For these applications, the permissible linear speeds and drive torques are those indicated for versions without screw supports.

Frictional torques, mass moments of inertia and moved masses

These can be found in the in the corresponding tables on the following pages.

Calculation example

A calculation example that shows the interplay of all chosen components for a typical application can be found in the "Calculations and Examples" section.

Service life calculation

The size of the drive unit can be specified by performing a service life calculation.

In the "Calculations" section, the dynamic load rating given in the table is compared with the loads occurring in the application.

d₀ = nominal diameter

P = screw lead (R = right-hand)

 D_W = ball diameter

i = axb

"a" - number of load-carrying turns per thread

"b" - number of load-carrying threads on the screw

AGK size	Ball screw size	Part number	Load ratings	(N)
	d _o x P x D _w - i	of the ball nut used	dyn. C	stat. C _o
20	20 x 5R x 3 - 4	R1512 112 43	14300	21500
	20 x 20R x 3.5 - 3	R1512 172 07	13300	18800
	20 x 40R x 3.5 - 1x4	R2522 120 01	14000	26200
32	32 x 5R x 3.5 - 4	R1512 310 52	21600	40000
	32 x 10R x 3.969 - 5	R1512 340 52	26000	47000
	32 x 20R x 3.969 - 3	R1512 370 52	19700	33700
	32 x 32R x 3.969 - 3	R1512 390 52	19500	34000
40	40 x 5R x 3.5 - 5	R1512 412 21	29000	64000
	40 x 10R x 6 - 4	R1512 440 12	29000	64000
	40 x 20R x 6 - 3	R1512 470 12	29000	62800
	40 x 40R x 6 - 3	R1512 490 52	29000	62300

Stroke and Length Calculations

The main dimensions can be specified using a simple length calculation.

$$L = L_{Hmax} + L_C + L_N$$

$$L_{AGK} = L + L_2 + B_1 + B_{11}$$

L_C = length of the ball nut enclosure L_{Hmax} = maximum stroke required by customer

L_N = unusable length, resulting from sealing strip fastening, screw supports, and excess travel on the screw

Example of a stroke and length calculation for AGK 32x20 with two screw supports:

The required stroke is 1650 mm.

$$L = L_{Hmax} + L_C + L_N$$

L = 1650 mm + 204 mm + 454 mm

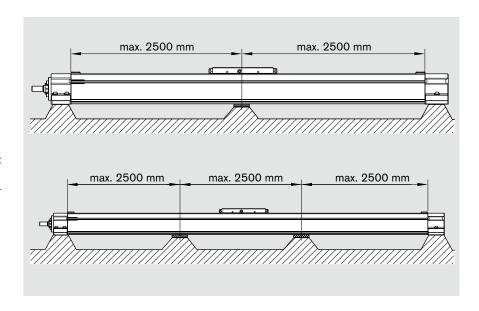
L = 2308 mm

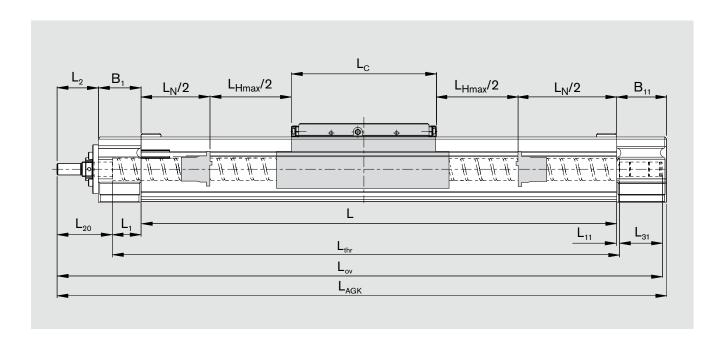
$$L_{AGK} = L + L_2 + B_1 + B_{11}$$

 $L_{AGK} = 2308 \text{ mm} + 58 \text{ mm} + 60 \text{ mm} + 70 \text{ mm}$

 $L_{AGK} = 2496 \text{ mm}$

Provide supports for the encapsulation profile


The encapsulation profile may deflect under its own weight.


For a free length L of more than 2500 mm, supports must therefore be provided for the encapsulation profile.

- Spacing between the support points:
 max. 2500 mm
- The mounting bases for the encapsulation profile supports and the pillow blocks should be on the same level.

When the drive unit is in operation, the encapsulation profile lifts as the drive carriage passes over it, then sinks back down onto the supporting surface.

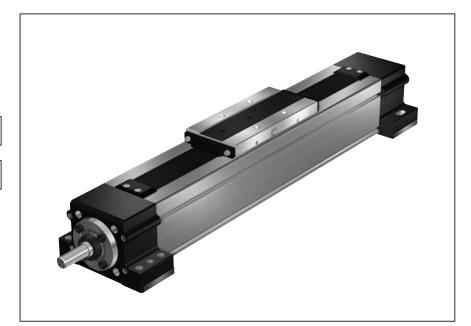
Provide damping material on the surfaces of the encapsulation profile supports, e.g. foam rubber pads.

AGK size	Ball screw size	Dimer	imensions (mm)											
		L _c	L _N			B₁	B ₁₁	L ₁	L ₂	L ₁₁	L ₂₀	L ₃₁		
			w/o SPU	1xSPU	2xSPU	3xSPU								
	d₀ x P			(per side)	(per side)	(per side)								
20	20 x 5/20/40	204	166	281	406	531	60	60	42	42	4	60	47	
32	32 x 5/10/20/32	204	214	329	454	579	60	70	40	58	4	78	60	
40	40 x 5/10/20/40	264	246	361	486	611	65	80	45	73	4	93	68	

 $egin{array}{ll} \mathbf{d_0} &= & \text{nominal diameter} \\ \mathbf{P} &= & \text{screw lead (right-hand)} \end{array}$

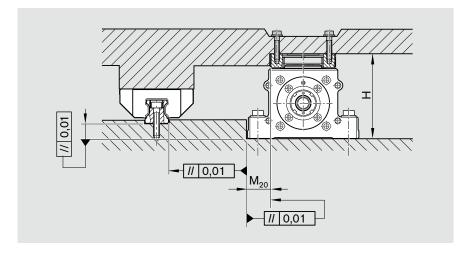
Technical Data and Dimensions

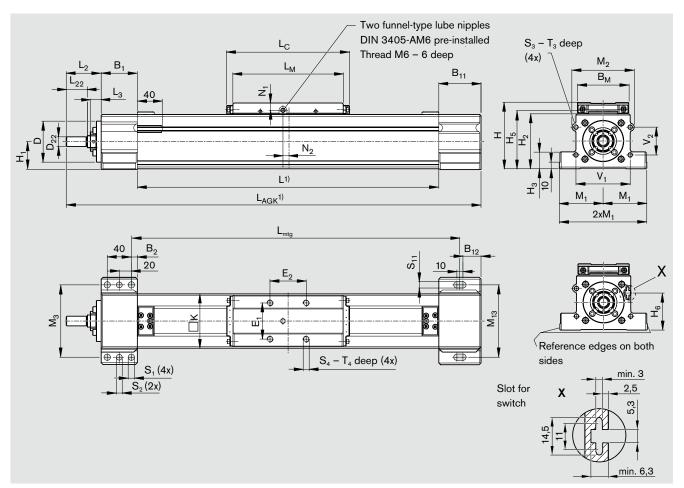
The mounting dimensions for the drive unit and the tolerance specifications for the adjoining structure are given below. For inquiries, there are corresponding CAD files available in AutoCAD format.


$$L_{mtg} = L + B_2 + (B_{11}/2)$$

$$L_{mtg} = L_{AGK} - L_2 - B_1 + B_2 - (B_{11}/2)$$

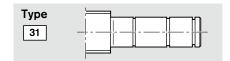
 $L_{\tiny mtg} = mounting \ length$

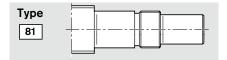

d₀ = nominal diameter = screw lead (right-hand)


pillow blocks and rail guides:

Parallelism of customer attachment,

Ball screw size	Dimension	s (mm)
	H	M ₂₀
d _o x P	±0.01	±0.01
20x5/20/40	100	35.0
32x5/10/20/32	110	30.0
40x5/10/20/40	135	37.5




1) as calculated

AGK	Ball screw	Dimen	imensions (mm)															
size	size	B₁	B_2	B ₁₁	B ₁₂	B_{M}	D ₁	D ₂₂	E,	E ₂	H ₁	H_2	Н₃	H₅	H ₆	K	L ₂	L_3
	d₀ x P						-0.013	h7				±0.15						
20	20x5/20/40	60	10.0	60	25	75	55	10	60	60	41	81	28	86	31	80	42	15
32	32x5/10/20/32	60	10.0	70	30	85	68	16	60	60	46	91	28	96	67	90	58	18
40	40x5/10/20/40	65	12.5	80	35	105	80	25	80	80	56	111	33	116	82	110	73	20

AGK	Ball screw	Dimer	Dimensions (mm)															
size	size	L ₂₂	L_{M}	M ₁	M ₂	M ₂	M ₁₃	N ₁	N ₂	Sı	S ₂	S₃	S ₄	S ₁₁	T ₃	T ₄	V ₁	V ₂
	d₀ x P			±0.015														
20	20x5/20/40	25	183	72.5	80	120	120	12	20.0	10.5	9.7	M8	M10	10.5	15	15	66	50
32	32x5/10/20/32	35	183	72.5	103	120	120	12	8.5	10.5	9.7	M8	M10	10.5	15	15	90	46
40	40x5/10/20/40	50	243	90.0	116	150	150	17	19.0	13.0	11.7	M10	M12	13.0	20	16	100	65

Screw ends:

Technical Data and Dimensions, with motor mount, coupling and motor

The dimensions for the drive unit version with motor mount, coupling and motor are given below. For inquiries, there are corresponding CAD files available in AutoCAD format.

More technical data and details of accessories for the MSM servo drive used can be found in the catalogs

- ARS, EcoDrive Cs (R310D0 2725)
- EcoDrive Cs Project Planning Manual (R911295757)
- EcoDrive Cs Drive Control Units MGP 01 VRS (R911296548)

More technical data and details of accessories for the MSK servo drives used can be found in the catalogs

- Controllers, Motors, Electrical Accessories (R310EN 2710)
- Synchronous Motors MSK Project Planning Manual (R911296288)
- Rexroth IndraDrive and Rexroth IndraDyn (R911311519)

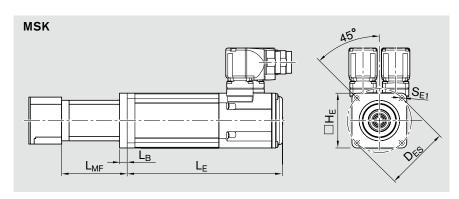
d₀ = nominal diameterP = screw lead (right-hand)

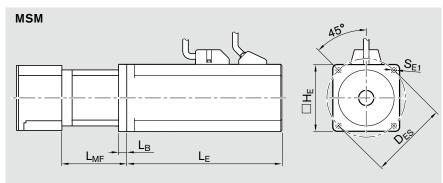
Frictional torques at motor journal

AGK size	Ball screw size	Frictional torqu	Frictional torques at motor journal M _{RS} (Nm)											
	d _o x P	w/o SPU	1 pair SPU	2 pairs SPU	3 pairs SPU									
20	20x 5	0.40	0.40	0.50	0.50									
	20x20	0.50	0.60	0.70	0.80									
	20x40	0.60	0.80	1.00	1.20									
32	32x5	0.80	0.80	0.90	0.90									
	32x10	0.90	1.00	1.00	1.10									
	32x20	0.90	1.00	1.10	1.30									
	32x32	1.00	1.20	1.40	1.60									
40	40x5	1.20	1.20	1.30	1.30									
	40x10	1.50	1.60	1.70	1.80									
	40x20	1.30	1.50	1.60	1.80									
	40x40	1.60	1.90	2.30	2.60									

Technical data of coupling

AGK size	Ball screw size	Motor type	Rated torque	Mass moment of inertia	Weight
			M _{KN}	J _K	m _K
	d₀ x P		(Nm)	(kgm² 10 ⁻⁴)	(kg)
20	20x5/20/40	MSM 040B with/without brake	14.5	0.63	0.265
		MSK 040C with/without brake	19.0	0.60	0.260
		MSK 050C with/without brake	50.0	2.00	0.700
32	32x5/10/20/32	MSK 060C with/without brake	50.0	2.00	0.700
		MSK 076C with brake	98.0	3.90	0.900
40	40x5/10/20/40	MSK 076C with brake	98.0	3.90	0.900


Technical data of motors


Ambient temperature $T_{\mbox{\tiny amb}}$ 0 to +45 °C; protection class IP 65

Motor		MSM 040B	MSK 040C	MSK 050C	MSK 060C	MSK 076C
Part number with brake		R3471 075 03	R3471 087 03	R3471 089 03	R3471 091 03	R3471 093 03
Part number without brake		R3471 074 03	R3471 086 06	R3471 088 03	R3471 090 03	_
Maximum speed n _{max}	(min ⁻¹)	4500	7500	6000	6000	5000
Rated torque M _{MN}	(Nm)	2.4	2.7	5.0	8.0	12.0
Maximum torque M _{Mmax} 1)	(Nm)	7.1	8.1	15.0	24.0	43.5
Motor mass moment of inertia \mathbf{J}_{M}	(10 ⁻⁴ kgm ²)	0.67	1.4	3.3	8.0	43.0
Brake mass moment of inertia J _{Br}	(10 ⁻⁴ kgm ²)	0.08	0.23	1.07	0.59	3.60
Brake holding torque M _{Br}	(Nm)	2.45	4.00	5.00	10.00	11.00
Mass of motor m _M	(kg)	3.1	3.6	5.4	8.4	14.0
Mass of brake m _{Br}	(kg)	0.7	0.3	0.7	0.4	1.1

¹⁾ depends on controller used

Motor mount and motor dimensions

AGK size	Ball screw	Motor type	Dimensions	(mm)					
	size		D _{ES}	H _E	$L_{\scriptscriptstyle B}$		L _E	L _{MF}	S _{E1}
	d₀ x P					w/o brake	with brake		
20	20x5/20/40	MSM 040B	90	80	17	157.5	191.5	90	6.0
		MSK 040C	95	82	15	185.5	215.5	90	6.6
		MSK 050C	115	98	17	203.0	233.0	115	9.0
32	32x5/10/20/32	MSK 060C	130	116	12	226.0	259.0	125	9.0
		MSK 076C	165	140	17	_	292.5	133	11.0
40	40x5/10/20/40	MSK 076C	165	140	17	_	292.5	140	11.0

Technical Data and Dimensions, with timing belt side drive and motor

For inquiries, there are corresponding CAD files available in AutoCAD format. More technical data and details of accessories for the MSM servo drive used can be found in the catalogs

- ARS, EcoDrive Cs (R310D0 2725)
- EcoDrive Cs Project Planning Manual (R911295757)
- EcoDrive Cs Drive Control Units MGP 01 VRS (R911296548)

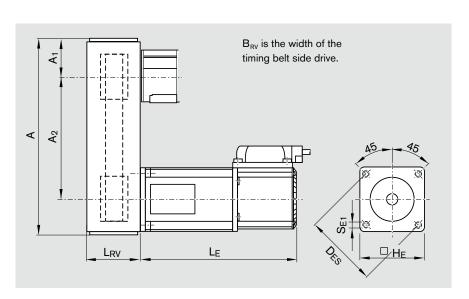
More technical data and details of accessories for the MSK servo drives used can be found in the catalogs

- Controllers, Motors, Electrical Accessories (R310EN 2710)
- Synchronous Motors MSK Project Planning Manual (R911296288)
- Rexroth IndraDrive and Rexroth IndraDyn (R911311519)

d₀ = nominal diameter
 P = screw lead (right-hand)
 i_{RV} = gear reduction of timing belt side drive

Technical data of timing belt side drive

AGK size	Ball screw size	Motor type	Gear ratio	Reduced moment of inertia	Permissible torque	Frictional torque
			i _{RV}	J _{RV}	M _{RV}	M _{RRV}
	d₀ x P			(kgm ² 10 ⁻⁴)	(Nm)	(Nm)
20	20x5	MSM 040B	1	0.024	2.1	0.4
	20x20				3.6	
	20x40				4.1	
	20x5	MSK 040C		0.024	2.1	
	20x20	1			3.6	
	20x40	1			4.1	
	20x5	MSK 050C		0.140	2.3	0.5
	20x20				4.3	
	20x40	1			5.0	
32	32x5	MSK 060C	1	0.140	12.0	0.5
	32x10/20/32				19.0	
	32x5	1	2	0.026	6.0	
	32x10	1			11.0	
	32x20/32				13.0	
40	40x5	MSK 076C	1	0.778	26.0	0.6
	40x10				52.0	
	40x20				67.0	
	40x40				67.0	
	40x5	1	2	0.126	13.0	
	40x10	İ			26.0	
	40x20				33.5	
	40x40				33.5	

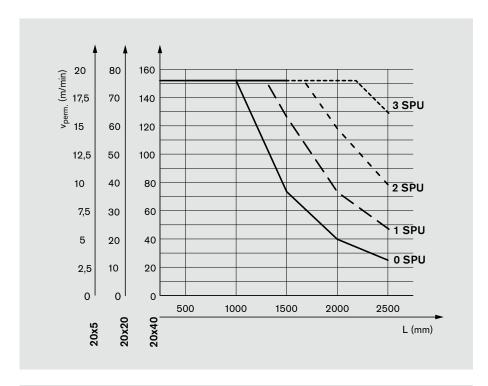

Technical data of motors

Ambient temperature $T_{\mbox{\tiny amb}}$ 0 to +45 °C; protection class IP 65

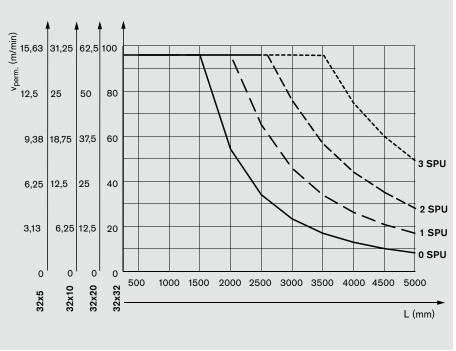
Motor		MSM 040B	MSK 040C	MSK 050C	MSK 060C	MSK 076C
Part number with brake		R3471 075 03	R3471 087 03	R3471 089 03	R3471 091 03	R3471 093 03
Part number without brake		R3471 074 03	R3471 086 06	R3471 088 03	R3471 090 03	-
Maximum speed n _{max}	(min ⁻¹)	4500	7500	6000	6000	5000
Rated torque M _{MN}	(Nm)	2.4	2.7	5.0	8.0	12.0
Maximum torque M _{Mmax} 1)	(Nm)	7.1	8.1	15.0	24.0	43.5
Motor mass moment of inertia $J_{\scriptscriptstyle M}$	(10 ⁻⁴ kgm ²)	0.67	1.4	3.3	8.0	43.0
Brake mass moment of inertia $J_{\mbox{\scriptsize Br}}$	(10 ⁻⁴ kgm ²)	0.08	0.23	1.07	0.59	3.60
Brake holding torque M _{Br}	(Nm)	2.45	4.00	5.00	10.00	11.00
Mass of motor m _M	(kg)	3.1	3.6	5.4	8.4	14.0
Mass of brake m _{Br}	(kg)	0.7	0.3	0.7	0.4	1.1

¹⁾ depends on controller used

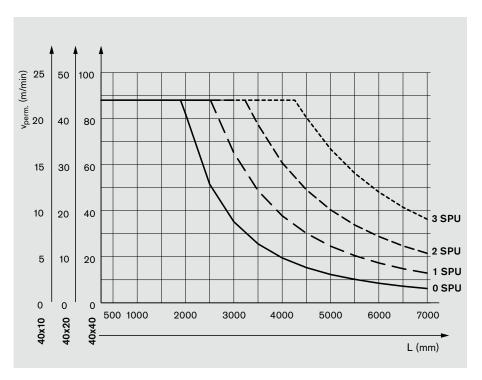
Dimensions of motors and timing belt side drive

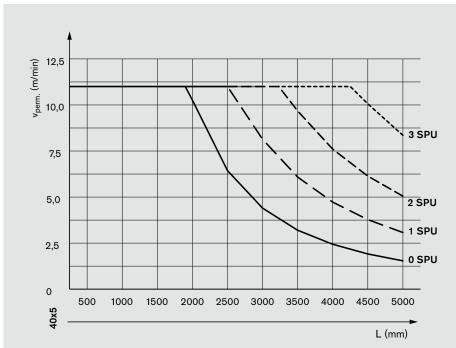


AGK size	Ball screw	Motor type	Dimer	nsions	(mm)									Weight
	size		Α	A ₁		A_2	B _{RV}	D _{ES}	H _E		L _E	L _{RV}	S_{E1}	M_{RV}
					i=1	i=2				without	with			
	d _o x P									brake	brake			(kg)
20	20x5/20/40	MSM 040B	231	47.5	122.5	-	88	90	80	157.5	191.5	51	6.0	on req.
		MSK 040C	231	47.5	122.5	-	88	95	82	185.5	215.5	51	6.6	on req.
		MSK 050C	287	66.0	155.0	-	116	115	98	203.0	233.0	56	9.0	on req.
32	32x5/10/20/32	MSK 060C	300	59.0	165.0	162	116	130	116	226.0	259.0	66	9.0	on req.
40	40x5/10/20/40	MSK 076C	409	77.0	240.0	238	160	165	140	_	292.5	90	11.0	on req.


Permissible Linear Speed $v_{\text{perm.}}$

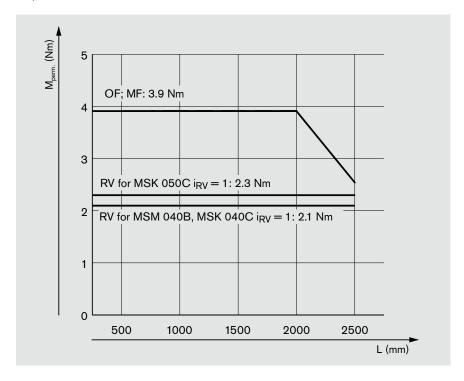
AGK 20, AGK 32, AGK 40


AGK size 20

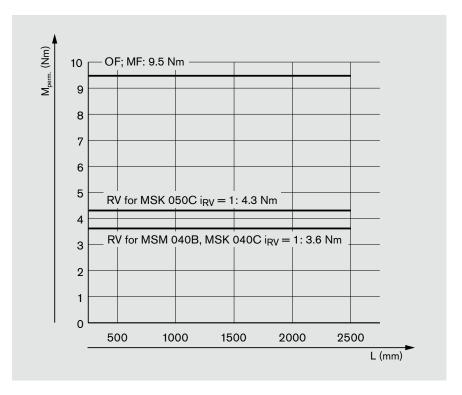


AGK size 32

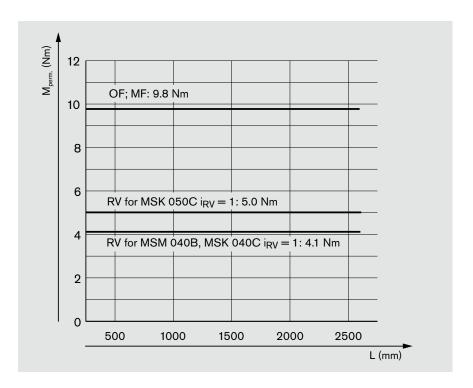
AGK size 40

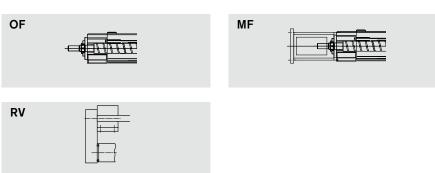


Permissible drive torque M_{perm.}


AGK 20

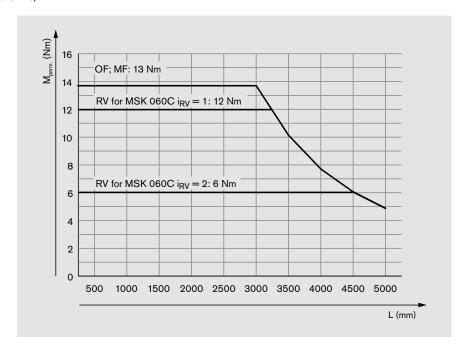
The torque must be read off from the curve for the specific drive type, OF (w/o motor mount), MF (with motor mount), or RV (timing belt side drive).


Ball screw size 20x5

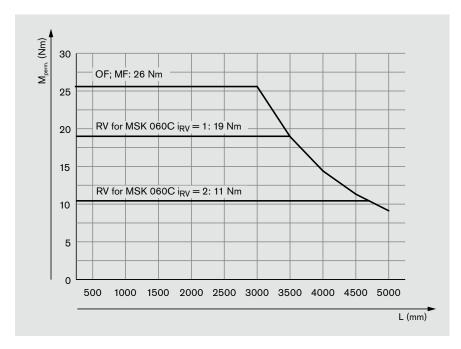


Ball screw size 20x20

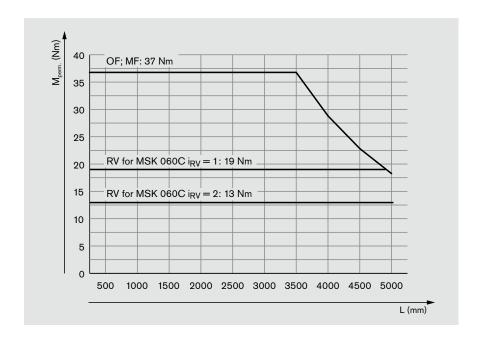
Ball screw size 20x40

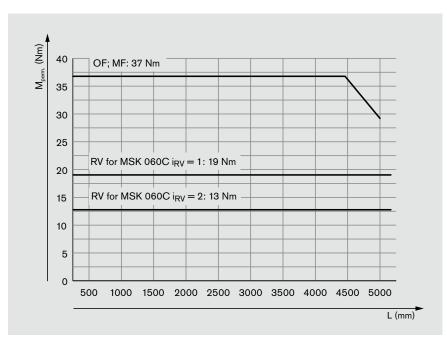


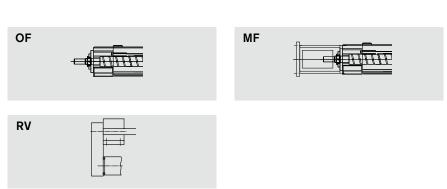
Permissible drive torque M_{perm.}


AGK 32

The torque must be read off from the curve for the specific drive type, OF (w/o motor mount), MF (with motor mount), or RV (timing belt side drive).

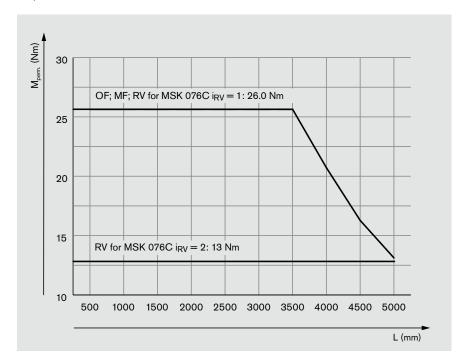

Ball screw size


Ball screw size 32x10

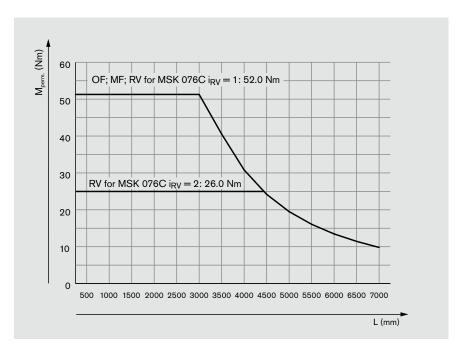


Ball screw size 32x20

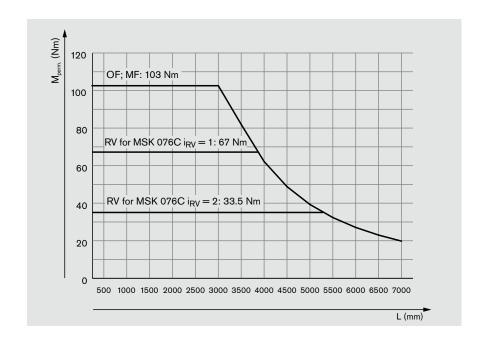
Ball screw size 32x32

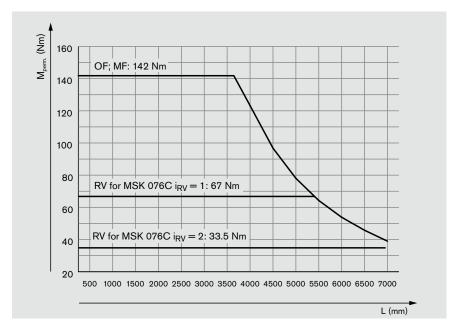


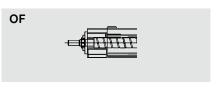
Permissible drive torque M_{perm.}


AGK 40

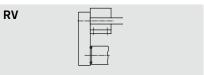
The torque must be read off from the curve for the specific drive type, OF (w/o motor mount), MF (with motor mount), or RV (timing belt side drive).


Ball screw size 40x5


Ball screw size 40x10



Ball screw size 40x20

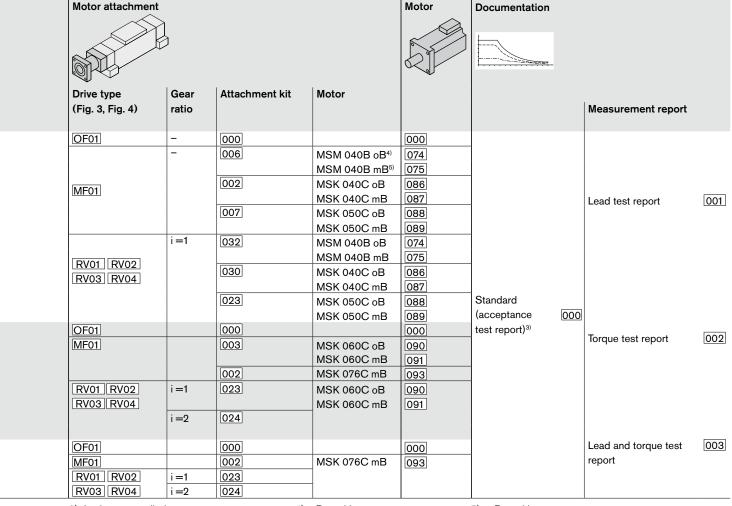


Ball screw size 40x40

Configuration and Ordering Data

Size	Ball sc	rew									
			I Dall mot		l C			l Dall	Cooking state	l c	
	d _o x P	(mm) (Fig. 1)	Ball nut Sealing type	Preload	Screw Tolerance grade	Lubrication		Ball nut enclosure (Fig. 2)	Sealing strip	Screw support	
AGK 20	20x5 20x20 20x40	-									
AGK 32	32x5 32x10 32x20 32x32	L = LAGK = LHmax = Lov = Lthr =	Standard seal 01 Low-friction seal 03 Without seal 00	Standard backlash 00 Reduced backlash 01 2% preload 03 3% preload 06	T5 T7 T9	Basic lubrication and anti-corrosion oil Anti-corrosion oil	01	MA01 MA02 MA01	Steel ²⁾ 01 Polyurethane 02	0SPU 00 1SPU 01 2SPU 02 3SPU 03	
AGK 40	40x5 40x10 40x20										

- 1) Only one length specification necessary
- 2) Up to L = 3500 mm only

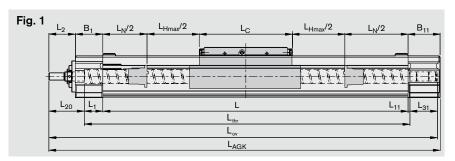

Order example:

Fixed parameters			
Lead direction	right-hand	Number of ball	fixed
		track turns	
Ball nut enclosure	MAG-Z	Screw	rolled
Ball nut	ZEM-E-S		
Left-hand bearing	SEC-F	Right-hand	SEC-L
		bearing	
Screw end type	81	Screw end type	31
End face	K	End face	K

When	Olu	enna.

Please state the option number given in the box as appropriate (e.g. $\boxed{01}$).

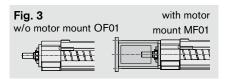
Variable parameters		Ordering
	Selected	data
Size	AGK 20	AGK 20
Ball screw	20x20	20x20
Length	Overall length 1350 mm	L _{ov} = 1350
Sealing type	Standard seal	01
Preload	Reduced backlash	01
Screw tolerance grade	T5	T5
Lubrication	Basic lubrication, anti-corrosion oil	01
Ball nut enclosure	MA02	MA02
Sealing strip	Steel	01
Screw support	2SPU	02
Drive type	with motor mount	MF01
Gear ratio	-	-
Attachment kit for motor	MSM 040B with brake	006
Motor	MSM 040B with brake	075
Documentation	Torque test report	002
	(incl. standard test report)	

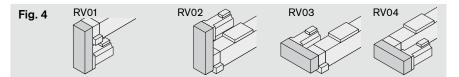


3) Is always supplied

Selection aids Lengths

4) oB = without motor


5) mB = with motor


Ball nut enclosure

Motor attachment / Attachment kit

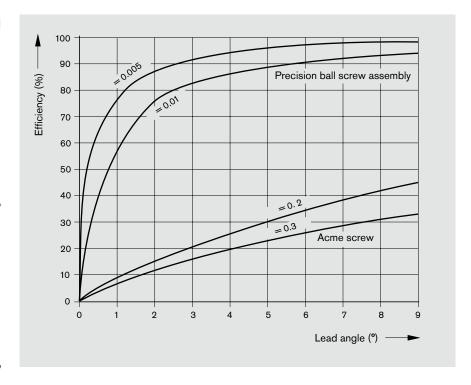
Timing belt side drive

Technical Notes

Technical Notes

DIN 69051, Part 1 defines a ball screw as follows:

An assembly comprising a ball screw shaft and a ball nut and which is capable of converting rotary motion into linear motion and vice versa. The rolling elements of the assembly are balls.


Advantages over the Acme screw drive

- The mechanical efficiency of an Acme screw drive is a maximum 50%, whereas a ball screw can reach a mechanical efficiency of up to 98%.
- Higher life expectancy due to negligible wear during operation
- Low drive power required
- No stick-slip effect
- More precise positioning
- Higher travel speed
- Less heat-up

Due to their higher mechanical efficiency, ball screws are in principle not selflocking.

△ Safety information

We recommend that a safety nut be installed for particularly critical applications in vertical set-ups. Please consult us.

Selection criteria for ball screws

The following factors should be considered when selecting the ball screw for a given application:

- degree of accuracy required (lead deviation)
- in-service load conditions
- service life
- critical speed
- buckling load
- rigidity/permissible clearance or desired preload
- characteristic speed (max. permissible linear speed)

For best results in terms of design and cost-efficiency, the following points should be taken into consideration:

- The lead is a decisive factor for the load-carrying capacity (depending on the maximum possible ball diameter) and the drive torque.
- The calculation of the service life should be based on average loads and average speeds, not on maximum values.
- In order for us to provide you with a customized solution, installation drawings or sketches of the ball nut environment should be enclosed with your inquiry.

⚠ Note

Radial and eccentric forces relative to the screw must be avoided, as they can affect the ball screw's performance and shorten its life.

Where special conditions of use are involved, please consult us.

Load-carrying capacities and service life

We calculate load ratings and service life in accordance with DIN 69051, Part 4 and ISO 3408-4, Part 5.

Basic static load rating C₀

The static load rating is an axial, concentrically acting force that induces a permanent deformation of 0.0001 x the ball diameter between the ball and the ball raceway.

Dynamic load rating C

The dynamic load rating is an axial, concentrically acting force of constant magnitude and direction under which 90% of a sufficiently large number of identical ball screws can achieve a nominal service life of one million revolutions.

Service life

The nominal life is expressed by the number of revolutions (or number of operating hours at constant speed) that will be attained or exceeded by 90% of a representative sample of identical ball screws before the first signs of material fatigue become evident. The nominal life is designated as L or $L_{\rm hr}$ depending on whether it is specified in revolutions or hours.

Short stroke

During a short stroke, the ball does not make a real turn. It is therefore impossible for an adequate lubricating film to form. This may result in premature wear. In the chart, the minimum required stroke (travel) for a 10% lower load rating is shown as a function of the number of turns and lead of the nut. Hence the most favorable range lies above each curve. It may help to have occasional longer strokes, which are performed with simultaneous relubrication as "lubricating strokes." If in doubt, please ask.

Critical speed and buckling load

The critical speed and buckling load can be checked using the corresponding charts.

For precise calculations:

See the "Design Calculations" section in the main Precision Ball Screw Assemblies catalog R310EN 3301.

Characteristic speed do · n

Rexroth ball screws can be operated at very high speeds due to their internal ball recirculation system. Characteristic speeds of up to 150,000 are possible depending on the nut type.

 $d_0 \cdot n \le 150,000$ $d_0 = nominal diameter (mm)$ $n = speed (min^{-1})$

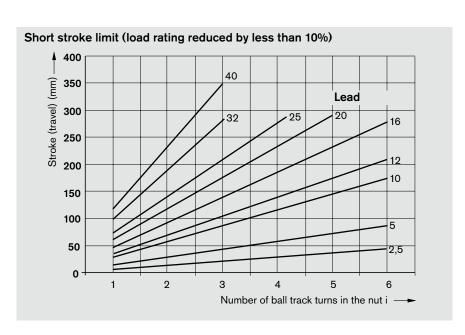
The theoretically possible maximum linear speed v_{max} (m/min) is specified on the page featuring the relevant nut. Actually attainable speeds are heavily dependent among other factors on preload and duty cycle. They are generally restricted by the critical speed. (See "Design Calculations" section.)

Material, hardness

Our standard ball screw assemblies are made of high-quality, heat-treatable steel, carbon chrome alloy steels or case-hardened steels. The screw and nut raceways have a minimum Rockwell hardness of HRC 60. Ball screw assemblies made of corrosion-resistant steel (DIN 17230, EN 10088) are available on request. Normally, the screw ends remain unhardened.

Sealing

Ball screws are precision assemblies that require protection against contamination. Flat protective covers and bellows type dust boots or the drive unit AGK are particularly suitable for this


purpose. As there are many applications in which these methods do not provide sufficient protection, we have developed a gapless lip-type seal which ensures an optimal sealing effect and maintains high efficiency due to the low friction level. Our ball screws are therefore supplied with seals in their standard versions. At the customer's request, these seals can be omitted or special seals used in their place. A reinforced version of the standard seal has been developed for those applications where heavy contamination of the screw appears inevitable. The sealing effect has been improved further by increasing the preload. What must be borne in mind is the significantly higher friction torque in comparison with the standard friction torque (see Technical Data) and the associated increased heat build-up. The reinforced seal can be easily recognized by its dark green color.

Permissible operating temperatures

Ball screws are suitable for continuous operation at temperatures up to 80°C with temporary peaks of 100°C (measurements taken on the outer shell of the nut).

Permissible operating temperatures: $-10~^{\circ}C \le T_{operating} \le 80~^{\circ}C$

Permissible bearing temperature: $-15~^{\circ}C \le T_{\text{bearing}} \le 80~^{\circ}C$

Bosch Rexroth AG

Technical Notes

70

Acceptance Conditions and Tolerance Grades

Permissible travel deviation

in accordance with DIN 69051, Part 3 and ISO 3408-3

Many values are significantly more accurate than those defined in DIN 69051, Part 3 and ISO 3408-3.

Symbol definitions: (excerpt)

l₀ = nominal travel

I₁ = thread length

 Δl_0 = travel deviation

l, = useful travel

'e excess travel (the closer tolerances for travel and hardness do not apply here)

c = travel compensation for useful travel, defined by user (standard: c = 0)

e'_p = tolerance for mean actual travel deviation

v_{up} = permissible travel variation within useful travel I,

 v_{300p} = permissible travel deviation within 300 mm travel

ν'_{2πp} = permissible travel deviation within 1 revolution

Subindices:

p = permissible

a = actual

Improved values

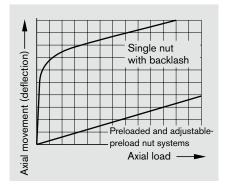
compared with DIN 69051, Part 3 and ISO 3408-3 (tolerance reduced by half).

	l _u	e' _p (μm) Tolerance grade		
>	≤	5	7	9
0	100	18	44	110
100	200	20	48	130
200	315	23	52	150
315			$e'_p = \frac{l_u}{300} \cdot V_{300p}$	

For precision screws SN-R the following values apply in all cases:

ν _{300p} (μm) Tolerance gra	de	
5	7	9
23	52	130

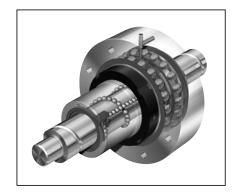
ν' _{2πp} (μm) Tolerance gra	de	
5	7	9
8	10	10


Non-usable length I'_e (excess travel)

l' _e	$\mathbf{d}_{\mathtt{o}}$ (mm)
(mm)	(mm)
15	8
20	12, 16
40	20, 25, 32, 40
50	50, 63, 80

Technical Notes

Preload and Rigidity


Nut system preload

In addition to single nuts with reduced backlash, Rexroth supplies nut systems preloaded by means of optimized ball size selection.

Driven nut for FAR units

Like any single nut, the driven nut can be preloaded to 2%, 3% or 5% of the basic dynamic load rating by means of ball size selection.

Rigidity of drive units

The rigidity of a drive unit is influenced by all adjoining parts such as bearings, housing bores, ball nut enclosures etc.

The tables opposite show pre-calculated values. In addition, the rigidity of the screw must be taken into account.

Overall axial rigidity R_{tot} of a single ball screw

The overall axial rigidity R_{tot} is comprised of the component rigidity of the screw R_{S} and the nut unit R_{G} .

$$\frac{1}{R_{tot}} = \frac{1}{R_s} + \frac{1}{R_G}$$

i = number of ball track turns

 d_0 = nominal diameter

 D_W = ball diameter

P = lead

R_{tot} = overall rigidity (complete system)

 R_s = rigidity of the screw

Please note that in most cases, the rigidity $R_{\rm S}$ of the screw will be significantly lower than the rigidity $R_{\rm G}$ of the nut unit.

R_G = rigidity of the ball nut enclosure with nut for a driven screw; rigidity of the nut and bearing for a driven nut

Rigidity in the area of the nut unit $R_{\mbox{\scriptsize G}}$

The rigidity in the area of the preloaded nut unit is calculated according to DIN 69051, Part 5. In drive units, $R_{\rm G}$ includes the additional rigidity of the nut bearing in versions with a driven nut. See the corresponding tables for rigidity values.

Rigidity values for FAR

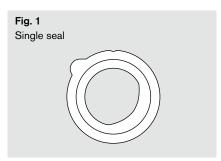
FAR size	Ball screw size	Rigidity		Overall rigidity of the	e nut unit (N/μm)
		Screw	Bearing	5% preload	2% preload
		R _s	R _{aL}	R _G	R _G
	d _o x P x D _w - i	(Nm/µm)	(N/μm)		
32	32x10Rx3.969-5	141	860	377	316
	32x20Rx3.969-3	141	860	278	222
	32x32Rx3.969-3	141	860	273	222
40	40x10Rx6-5	211	950	448	379
	40x20Rx6-3	211	950	332	271
	40x40Rx6-3	211	950	323	266
50	50x10Rx6-6	345	1050	556	482
	50x20Rx6.5-5	345	1050	525	448
	50x40Rx6.5-3	340	1050	386	315
63	63x10Rx6-3	569	1150	627	549
	63x20Rx6.5-5	563	1150	599	514
	63x40Rx6.5-3	563	1150	461	381

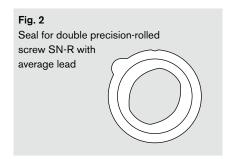
Dynamic drag torque

d₀ = nominal diameter
 P = screw lead (R = right-hand)

D_w = ball diameteri = number of ball track turns

Size	ize Dynamic drag torque without seals T _{pr0} (Nm)						
	Screws with prek	oaded sin	gle nuts	,			
	2%	3%		5%			
	Tolerance grade	Toleranc	e grade	Toleranc	e grade	Toleranc	e grade
	5; 7	5; 7		5		7	
$D_0 \times P \times D_W - i$	max.	min.	max.	min.	max.	min.	max.
20 x 5R x 3 - 4	0.060	0.030	0.14	0.07	0.21	0.06	0.23
20 x 20R x 3.5 - 3	0.050	0.030	0.13	0.07	0.20	0.05	0.21
20 x 40R x 3.5 - 1x4	0.060	_	-	-	_	_	
32 x 5R x 3.5 - 4	0.140	0.100	0.31	0.24	0.45	0.21	0.48
32 x 10R x 3.969 - 5	0.200	0.150	0.46	0.36	0.66	0.30	0.71
32 x 20R x 3.969 - 3	0.130	0.070	0.31	0.22	0.41	0.19	0.44
32 x 32R x 3.969 - 3	0.120	0.070	0.31	0.22	0.41	0.19	0.44
40 x 5R x 3.5 - 5	0.230	0.170	0.52	0.41	0.76	0.35	0.81
40 x 10R x 6 - 4	0.400	0.360	0.84	0.75	1.25	0.70	1.30
40 x 10R x 6 - 5	0.490	0.440	1.03	0.92	1.53	0.86	1.59
40 x 20R x 6 - 3	0.300	0.230	0.68	0.57	0.95	0.53	0.99
40 x 40R x 6 - 3	0.300	0.220	0.67	0.56	0.93	0.52	0.96
50 x 10R x 6 - 6	0.800	0.720	1.67	1.49	2.49	1.39	2.59
50 x 20R x 6.5 - 5	0.760	0.680	1.59	1.42	2.37	1.32	2.46
50 x 40R x 6.5 - 3	0.470	0.420	0.98	0.87	1.45	0.81	1.51
63 x 10R x 6 - 6	1.120	1.010	2.35	2.24	3.36	2.10	3.50
63 x 20R x 6.5 - 5	1.060	0.950	2.22	2.11	3.17	1.98	3.30
63 x 40R x 6.5 - 3	0.670	0.610	1.41	1.26	2.10	1.18	2.19


The values given for dynamic drag torque are proven practical indicators for the nut preloading.


Technical Notes

Seals and Mounting

In addition to standard seals, reinforced seals and low-friction seals are also available as an option. Reinforced seals are identified by their opal-green color and their part number.

Low friction seals are gap seals without frictional drag. The seals are identified by their red-brown color and their part number.

Seal torque for single nuts

The dynamic drag torque of seals has already been taken into account in the drive units. Reinforced seals will increase this torque.

Size	Size Dynamic drag torque of the 2 seals T _{RD} (Nm) approx.						
	Standard seals	Reinforced seals	Low-friction seals				
$d_0 \times P \times D_w - i$			$T_{RD} = 0 \text{ Nm}$				
20 x 5R x 3	0.10	_	x				
20 x 20R x 3.5	0.12	-	✓				
20 x 40R x 3.5	0.04	_	✓				
32 x 5R x 3.5	0.25	0.51	х				
32 x 10R x 3.969	0.25	0.46	х				
32 x 20R x 3.969	0.25	0.49	х				
32 x 32R x 3.969	0.25	0.45	х				
40 x 5R x 3.5	0.40	0.85	х				
40 x 10R x 6	0.40	0.91	х				
40 x 20R x 6	0.40	0.54	х				
40 x 40R x 6	0.40	_	✓				
50 x 10R x 6	0.60	0.95	-				
50 x 20R x 6.5	0.60	-	-				
50 x 40R x 6.5	0.70	-	-				
63 x 10R x 6	1.20	_	-				
63 x 20R x 6.5	1.20	1.0	-				
63 x 40R x 6.5	1.20	1.4	-				

 T_{RD} = dynamic drag torque of the 2 seals

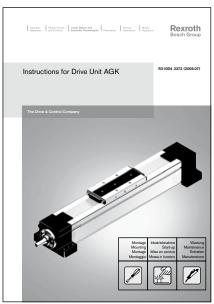
 d_0 = nominal diameter

P = screw lead (R = right-hand)

 D_W = ball diameter

i = number of ball track turns

√ Seal available


x Seal in preparation

Inserting the seal

Position the nut on the screw as illustrated in the diagram. Insert the seal so that its projection is in the recess and press it in until it snaps into the groove. While turning the nut on the screw, watch the sealing lip carefully and straighten it if necessary by applying pressure to the exposed face. Ensure that the lip is not damaged. Detailed mounting instructions are delivered along with the parts.

Mounting

Coming soon:

Instructions for Drive Unit AOK (R310D4 3374)

Instructions for Drive Unit FAR (R310D4 3373)

R310D4 3372 (2005-11)


Alignment of the precision ball screw assembly in the machine

A gauge with a self-aligning contact pad is available from Rexroth for easy alignment of the ball screw assembly.

Two pads of different lengths are available for use with different screw leads.

- Part number R3305 131 19, length 33 mm for leads < 20
- Part number R3305 131 21, length 50 mm for leads > 20

These pads can be ordered separately (without the gauge).

Technical Notes

Lubrication

Standard lubrication practices for ball bearings also apply to ball screws. Lubricant loss is, however, greater than that from conventional ball bearings, for instance, due to the axial motion between the screw and the nut.

Oil lubrication

The influence of the temperature on the performance of the ball screw is very significant, as the thermal expansion of the ball screw interferes with the positioning accuracy of the assembly.

One of the advantages of oil lubrication over grease lubrication is therefore the minimized heat build-up of the ball screw, particularly at high speeds.

As a rule, commercially available mineral base oils used for ball bearings are suitable.

The necessary viscosity depends on the speed, temperature and load conditions of the respective application (see DIN 51501, 51517, 51519 and GfT Worksheet 3).

Oils ranging from ISO VG 68 to approx. ISO VG 460 are used in practice. The high viscosity grades (e.g. ISO VG 460) should be preferred in general and particularly for slow running screws. A maximum relubrication interval of up to 10 operating hours can be attained with

small quantities from the table below. Please ask for details for driven nuts.

Relubrication quantity and intervals for oil

d_{o}	Lubricating quantity		Lubricati	Lubricating interval ¹⁾					
	Initial lubrication	Relubrication	Time	Revolutions (mill.)	Travel (km)	with lead F	P =		
(mm)	V _e (ml)	V _n (ml/10h)	(h)		5	10	20	32	40
20	0.600	0.060	10	1.0	5.0		20.0		40.0
32	0.600	0.060	10	1.0	5.0	10.0	20.0	32.0	
40	2.000	0.400	10	1.0	5.0	10.0	20.0		40.0
50	4.000	0.800	10	1.0	5.0	10.0	20.0		40.0
63	4.000	0.800	10	1.0		10.0	20.0		40.0

¹⁾ The value first reached defines the lubricating interval.

 d_0 = nominal diameter

Limit conditions:

Orientation: - any

Operating mode: - driven screw

 no short stroking or hypercritical operation

Sealing: - standard

Grease Iubrication

The advantage of grease lubrication is that the ball screw can run long distances on one supply of grease. As a result, a lubricating system is not required in many cases. The amount of grease used should fill the nuts to approximately half of their capacity. All commercially available high-quality ball bearing lubricating greases may be used. Read the lubricant manufacturer's specifications carefully!

Never use greases with solid lubricant components (e.g. graphite or MoS₂).

For relubrication, grease cartridges containing Dynalub 510 and 520 are available from Rexroth.

Greases in accordance with DIN 518

Greases in accordance with DIN 51825-K2K and, for higher loads, KP2K of NLGI Class 2 in accordance with DIN 51818 are recommended for the longest possible lubrication intervals. Tests have shown that greases of NLGI Class 00 achieve only about 50% of the running performance of Class 2 at higher loads. The relubrication interval depends on many factors such as the degree of contamination, operating temperature, load, etc. The following values can thus serve only as a guide.

Relubrication intervals for NLGI 2 greases

d_{o}	Lubricating quantity	Lubricating interval					
	Relubrication V _e (ml)	Revolutions (mill.) Travel (km) with lead P =					
			5	10	20	32	40
≤ 40	See table for	50	250	500	1000	1600	2000
> 40	NLGI 2 greases	10	50	100	200		400

 d_0 = nominal diameter

Relubrication quantities for AOK, AGK

For NLGI 2 greases:

The nut has to be lubricated with lubricant via the lube port before the ball screw is started.

Twice the relubrication quantity of grease is to be used when lubricating for the first time.

Ball screw size	Relubrication quantity of grease (g)
d _o x P x D _w - i	AOK, AGK
20 x 5R x 3 - 4	0.90
20 x 20R x 3.5 - 3	2.20
20 x 40R x 3.5 - 1x4	1.30
32 x 5R x 3.5 - 4	2.00
32 x 10R x 3.969 - 5	2.80
32 x 20R x 3.969 - 3	3.20
32 x 32R x 3.969 - 3	4.90
40 x 5R x 3.5 - 5	2.70
40 x 10R x 6 - 4	6.00
40 x 20R x 6 - 3	7.80
40 x 40R x 6 - 2	9.40
40 x 40R x 6 - 3	12.90

Lubrication of the end bearings (for AOK, AGK)

As a rule, the initial grease quantity will last for the entire service life of a ball screw assembly.

Technical Notes

Lubrication

Relubrication quantities for driven nut FAR For NLGI 2 greases

The driven nut can be relubricated with grease via the outer race of the angular contact thrust ball bearing. The nut can be at any position along the screw. The only precaution required is to make sure that the nut is at a standstill when applying the lubricant. This effectively solves the problem of a rotating lube port on the nut itself.

Two lube ports (M6) with radial or axial access points are provided. These ports are closed by set screws for shipment. The selected lube port can be opened simply by removing the set screw.

FAR size	Ball screw size	Relubrication quantity (g)
	d _o x P x D _w - i	
32	32 x 10R x 3.969 - 5	3.2
	32 x 20R x 3.969 - 3	3.7
	32 x 32R x 3.969 - 3	5.6
40	40 x 10R x 6 - 5	7.7
	40 x 20R x 6 - 3	9.0
	40 x 40R x 6 - 3	14.8
50	50 x 10R x 6 - 6	11.2
	50 x 20R x 6.5 - 5	17.9
	50 x 40R x 6.5 - 3	21.4
63	63 x 10R x 6 - 6	12.7
	63 x 20R x 6.5 - 5	22.1
	63 x 40R x 6.5 - 3	26.4

Service Life Calculation

Average speed and average load

Where the speed and load fluctuate, the service life must be calculated using the averages $F_{\scriptscriptstyle m}$ and $n_{\scriptscriptstyle m}.$

- Where the speed fluctuates, the average speed n_m is calculated as follows
- $n_{m} = \frac{q_{1}}{100} \cdot n_{1} + \frac{q_{2}}{100} \cdot n_{2} + \dots + \frac{q_{n}}{100} \cdot n_{n}$
- Where the load fluctuates and the speed is constant, the average load
 F_m is calculated as follows
- $F_m = \sqrt[3]{F_1^3 \cdot \frac{q_1}{100} + F_2^3 \cdot \frac{q_2}{100} + \dots + F_n^3 \cdot \frac{q_n}{100}}$
- Where both the load and the speed fluctuate, the average load F_m is calculated as follows

$$F_{m} = \sqrt[3]{F_{1}^{3} \cdot \frac{n_{1}}{n_{m}} \cdot \frac{q_{1}}{100} + F_{2}^{3} \cdot \frac{n_{2}}{n_{m}} \cdot \frac{q_{2}}{100} + ... + F_{n}^{3} \cdot \frac{n_{n}}{n_{m}} \cdot \frac{q_{n}}{100}}$$

Service life in revolutions L

$$L = \left(\frac{C}{F_{m}}\right)^{3} \cdot 10^{6} \qquad \Rightarrow C = F_{m} \cdot \sqrt[3]{\frac{L}{10^{6}}} \qquad \Rightarrow F_{m} = \frac{C}{\sqrt[3]{\frac{L}{10^{6}}}}$$

Nominal life Service life in hours L_h

$$L_h = \frac{L}{n_m \cdot 60}$$

 $\label{eq:machine operating hours} \ = L_{h} \cdot \ \frac{\mbox{Machine duty cycle}}{\mbox{Screw duty cycle}}$

C = dynamic load rating (N) $L_h = service life$ (h) $F_m = average load$ (N) $n_m = average speed$ (min⁻¹)

L = service life (revolutions) q = discrete time step (%)

Drive torque and drive power Drive torque M_{ta}

The dynamic drag torque must be taken into account for preloaded nuts.

$$M_{ta} = \frac{F \cdot P}{2000 \cdot \pi \cdot \eta}$$

$$P_a = \frac{M_{ta} \cdot n}{9550}$$

$$\begin{array}{lll} F &=& \text{operating load} & \text{(N)} \\ M_{ta} &=& \text{drive torque} & \text{(Nm)} \\ n &=& \text{rotary speed} & \text{(min}^{-1}) \\ P &=& \text{lead} & \text{(mm)} \\ P_{a} &=& \text{drive power} & \text{(kW)} \\ \eta &=& \text{mechanical} \end{array}$$

efficiency (approx. 0.9)

Sizing of the FAR Drive Unit

Basic benefits of systems with driven nuts

Mass moment of inertia

In long screws, only the nut has to be set into rotation during the acceleration phase, and not the screw. The mass moment of inertia is therefore not a determining factor.

The ball nut's mass moment of inertia is relatively small and no longer depends on the specified stroke.

Dynamics

Complex end bearing designs, e.g. fixed bearings with angular contact thrust ball bearings at both ends, are no longer required to achieve high dynamics.

Stretching

Since screw is stationary, it can be stretched with relatively little effort.

- Higher permissible axial load (buckling load); not limited by end bearings
- Compensation of thermal effects
- Higher total rigidity

Liquid cooling

Improved cooling can be easily accomplished by selecting a hollow screw. Since the screw is stationary, it can be cooled with relatively little design effort. With a controlled cooling system, length variations due to temperature fluctuations can be virtually eliminated.

Design and manufacturing tolerances

The use of nuts with high parallelism and radial runout accuracy reduces whipping of the screw to a minimum. All functional elements come from a single source, so there is no need for customer-built designs.

Critical speed

$$n_k = f_{nk} \cdot \frac{d_2}{l_n^2} \cdot 10^7 \text{ (min}^{-1)}$$

$$\rm n_{kperm.} = 0.8 \cdot n_k \ (min^{-1})$$

 n_k = critical speed (min⁻¹)

n_{kperm.}= permissible operating

speed (min⁻¹)

 f_{nk} = corrector value determined by bearing

d₂ = core diameter,

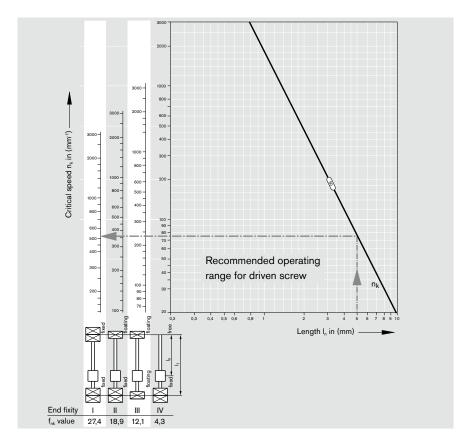
see Dimension Tables (mm)

 I_n = critical screw length for preloaded nut systems (mm)

Critical speed for driven screw: For the driven, rotating screw, the critical speed depends on the type of end fixity:

I fixed-fixed

II fixed-floating


III floating-floating

IV fixed-free

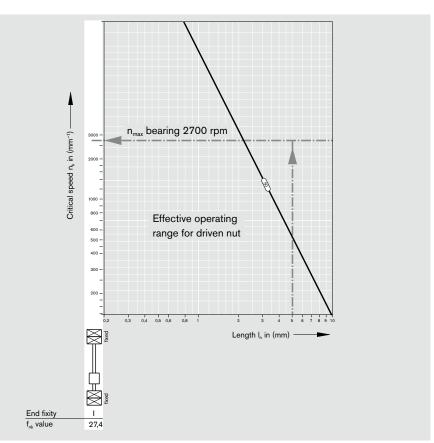
For systems with a driven screw the critical speed often restricts the achievable linear speed.

When horizontally mounted, the rotating screw itself can generate oscillations in the system as a result of its deflection or any imbalances. Depending on the free screw length and the speed, the oscillations can reach resonance level or very high amplitudes (whipping), which destroy the system.

For this reason, the screw is generally sized so that its maximum operating speed will be 20% below the critical speed.

Critical speed for driven nut:

For systems with a driven nut and stationary screw, auto-excitation of screw can be completely eliminated by appropriate constructions.


The only remaining factors that can cause oscillation are the manufacturing accuracy of the rotating nut and the machine configuration.

Since the FAR drive units use only ball nuts with highly accurate parallelism and radial runout, any negative influence on the total system emanating from the ball nut can therefore be ruled out.

The critical speed is no longer a restriction. The maximum linear speed is only limited by the maximum rotary speed of the bearings used and, in rarer cases, the high maximum permissible speed (d x n value) of the ball nut.

Note:

Applies only to fixed-fixed end fixity type

Sizing of the FAR Drive Unit

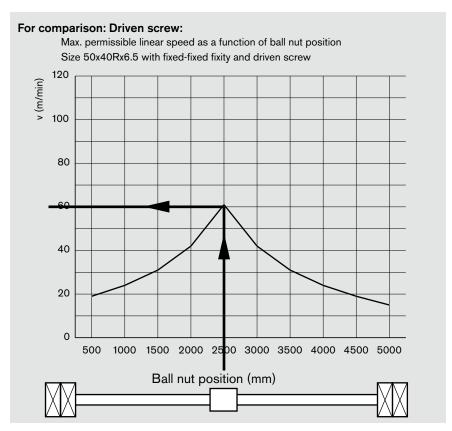
Permissible linear speed as a function of ball nut position

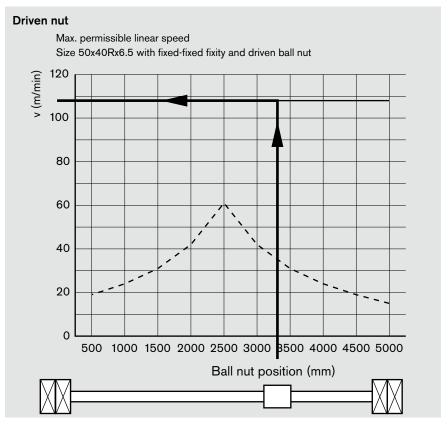
Permissible linear speed of driven ball nut Fixity I fixed-fixed Fixity II fixed-floating

Parameters:

- Screw length
- Screw diameter
- Lead
- End fixity
- Stretching force, negligible
- Max. rotary speed of bearing
- d x n value of ball nut

The charts shown here clearly illustrate the benefits of the driven nut over a conventional ball screw with a driven screw for a size 50x40Rx6.5 unit.


For the driven screw (top chart), the maximum linear speed for a ball nut favorably positioned in the middle of the screw is approx. 60 m/min. However, this speed is only achieved at one point in the stroke. When the nut is positioned anywhere else along the screw, only approx. 20 m/min can be achieved. To achieve a higher speed, the screw would have to be supported. As a result, the high rotary speed (d x n value) of the ball nut cannot be fully exploited in practice.


Driven nut

With a driven nut (bottom chart, fixity I fixed-fixed), on the other hand, the maximum linear speed of the drive unit is 108 m/min and is permissible at any position of the ball nut along the entire stroke.

For fixity II fixed-floating, the floating bearing (allowing axial displacement) can be designed so that the deflection line is tangential (deflection angle at the bearing point = 0).

When this is done, a floating bearing can be considered as a fixed bearing in the calculation.

The permissible rotary and linear speeds of the FAR drive units are listed in the following table: Fixity I fixed-fixed, and Fixity II fixed-floating

FAR size	Rotary speed n _{Max}	Linear speed v _{maxFAR}
d _o x P x D _w - i	(min ⁻¹)	(m/min)
32 x 10R x 3.969 - 5	3000	30
32 x 20R x 3.969 - 3	3000	60
32 x 32R x 3.969 - 3	3000	96
40 x 10R x 6 - 5	2800	28
40 x 20R x 6 - 3	2800	56
40 x 40R x 6 - 3	2800	112
50 x 10R x 6 - 6	2700	27
50 x 20R x 6.5 - 5	2700	54
50 x 40R x 6.5 - 3	2700	108
63 x 10R x 6 - 6	2300	23
63 x 20R x 6.5 - 5	2300	46
63 x 40R x 6.5 - 3	2300	92

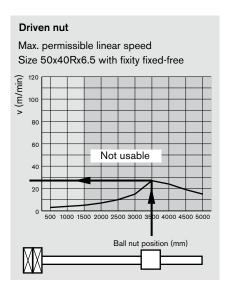
Conversion of rotary speed to linear speed

$$v_{max} = \frac{n_{max} \cdot P}{1000}$$

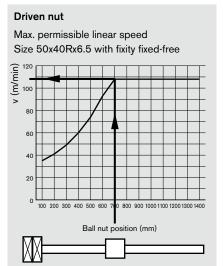
$$v_{max}$$
 = linear speed (m/min)
P = lead (mm)

$$n_{max} = rotary speed$$
 (rpm)

Fixity III floating-floating


Critical speed for a rotating ball nut and screw fixity IV fixed-free

For systems with a driven nut and fixity fixed-free, the screw can only be sized for short strokes in practice. To give an extreme example, in a horizontal set-up the dead weight of a 54x40 screw with a length of 5000 mm would cause an extreme deflection in the static state of approx. 180 mm. Even much smaller deflections and the resulting forces on the ball nut have to be reliably avoided by appropriate design measures.


In this case, even in the FAR models the critical speed can be taken as the limit when the ball nut is in an unfavorable position at the end fixity (see chart at right). According to the chart, the maximum theoretical value is 28 m/min, but this cannot be used because of the deflection.

For practical applications, the screw length must therefore be limited.

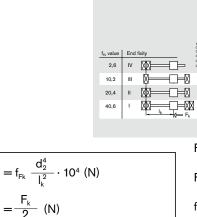
This type of end fixity is practically never used.

At the recommended maximum screw length $L_{\text{thr max}}$ the linear speed for a ball nut position of 700 mm is 108 m/min, as can be seen in the example shown in the chart on the far right.

size	length (mm)
	L _{thr max}
32	1000
40	1200
50	1400
63	1600

Sizing of the FAR Drive Unit

Permissible torque as a function of ball nut position


With the driven nut, the permissible drive torque is restricted by the following parameters:

- Screw length
- Screw diameter
- End fixity
- Stretching force
- Screw end geometry
- Load direction; in the worst case, an axial load on the longer portion of the screw (buckling)

The screw length, diameter and end fixity are taken into account in the Euler buckling equation. This gives the permissible axial screw load (see chart above). In practice, the formulas shown at right are used.

For a stretched screw, the following applies:

The drive torque required for the operating load can be calculated using the following formula:

Buckling load

(Š Š

щ

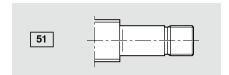
Axial load on screw

$$F_{\text{kperm.}} = \frac{F_{\text{k}}}{2} + F_{\text{R}}$$

≤ F_{kperm.}

The stretching force may decrease due to a rise in temperature during operation. This effect must be taken into account when calculating $F_{\text{kperm.}}$.

$$M_{ta} = \frac{F \cdot P}{2000 \cdot \pi \cdot \eta}$$

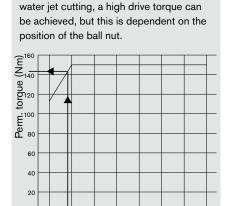

The dynamic drag torque must be taken into account for preloaded nuts.

 M_{ta} = drive torque at the ball nut (Nm) F = operating load (N) P = load (mm)

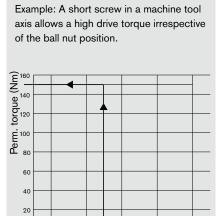
P = lead (mm)

η = mechanical efficiency (approx. 0.9)

Recommended maximum torques for screw end geometry 51



Ball screw size	M _{scr perm.} (Nm)
32	< 40
40	< 150
50	< 180
63	< 190


Typical application cases

Fixity I fixed-fixed Parameters:

- Screw length; two different cases considered
- Screw diameter
- End fixity, in this case fixed-fixed
- Stretching force, not taken into account here (see next page)
- Screw end geometry, Type 51 at both ends
- Load direction; in the worst case, an axial load on the longer portion of the screw (buckling)

Example: With a long screw axis, as in

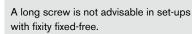
Ball nut position (mm)

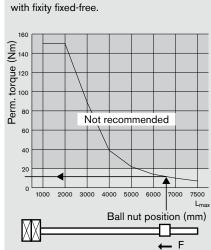
Fixity II fixed-floating

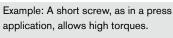
Fixity III floating-floating

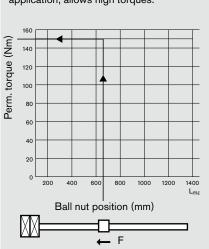
Fixity IV fixed-free Parameters:

- Screw length; two different cases considered
- Screw diameter
- End fixity, in this case fixed-free
- Stretching force, none
- Screw end geometry, Type 51 at one end
- Axial load in the direction of the fixed bearing


Stretching not possible


Ball nut position (mm)

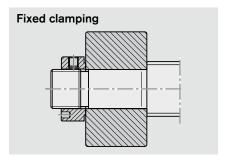

This type of end fixity is practically never used.

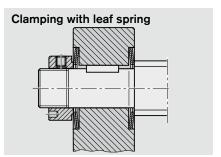

1500 2500 3500 4500 5500 6500

7500

Sizing of the FAR Drive Unit

Stretching of screws


Basic principles


To utilize the full performance capability of a system with a driven nut, the screw should be fixed at both ends (end fixity: fixed-fixed).

Stretching the screw has the following positive effect on the overall system:

 Compensation of thermal influences to avoid axial loads in the screw, thus reducing the danger of buckling The change in length and tensioning of the screw resulting from the stretching must be kept within a limit that is acceptable for the overall system. Otherwise, elastic deformation could result in excessive lead deviations between the ball nut and the screw, having a negative effect on the service life.

If the screw is cooled by convection, a temperature difference of max. 10 °C can be compensated for by stretching. For long, composite screws, the temperature difference should not be more than 5 °C. For higher temperature differences, water cooling is necessary.

Thermal expansion

Calculation of the thermal expansion of a screw as a result of a rise in temperature during operation.

$$\Delta L = L_{thr} \cdot \alpha_{L} \cdot (\vartheta_{scr} - \vartheta_{R})$$

where $\alpha_{l} = 0,0000115$

$$\Delta L$$
 = thermal expansion (mm)

$$L_{thr}$$
 = thread length (mm)

(1/K)

(K)

$$\alpha_{\rm L}$$
 = coefficient of thermal

$$\vartheta_{\rm scr} = {
m screw \ temperature}$$
 in operation

$$\vartheta_R$$
 = room temperature (K)

Stretching force

Calculation of the necessary stretching force to counteract thermal expansion.

$$F_R = \frac{\Delta L \cdot E \cdot \frac{\pi}{4} \cdot d_N^2}{L_{thr}}$$

$$F_R$$
 = stretching force (N)
 d_N = approximate diameter (mm)

$$d_N = \frac{d_0 + d_2}{2}$$

$$d_0 = \text{nominal diameter}$$
 (mm)
 $d_2 = \text{screw core diameter}$ (mm)

Compressive stress

The compressive stresses arising in a screw with fixed-fixed end fixity as a result of temperature variations is calculated as shown opposite.

$$\sigma_{\text{D}} = \text{E} \cdot (\vartheta_{\text{scr}} - \vartheta_{\text{R}}) \cdot \alpha_{\text{L}}$$

where E = 210,000 N/mm²

$$\sigma_{D}$$
 = compressive stress

due to temperature rise (N/mm²)

E = modulus of elasticity (N/mm²)

Tensile stress

For practical applications, the screw must be stretched so that resulting tensile stress is higher than the temperatureinduced compressive stress. At the same time, the permissible tensile stress must not be exceeded. Tensile stress generated in the screw by stretching

$$\sigma_{z} = \frac{F_{R}}{\frac{\pi}{4} \cdot d_{N}^{2}}$$

 σ_Z = tensile stress (N/mm²)

$$\sigma_{Z}$$
 < $\sigma_{perm.}$

 $\begin{array}{l} \text{Maximum permissible stress} \\ \sigma_{\text{perm.}} = 70 \text{ N/mm}^2 \end{array}$

Permissible elongation

Stretching causes the screw to elongate, which changes the screw and thread geometry. The extent of elongation must be checked to avoid any negative effects on the service life of the ball screw.

$$\Delta L_{perm.} = \frac{L_{thr}}{P} \cdot 0.002$$

$$\Delta L_{perm.}$$
 = permissible elongation (mm)

$$\Delta L \le \Delta L_{\text{perm.}}$$

 $_{-thr}$ = thread length (mm)

Rough Sizing of the FAR Drive Unit

The following calculation formulas are provided to help users pre-select an appropriate drive motor for the FAR drive unit. Accurate layout information is essential, as the motor choice is dependent on the mounting orientation, the applied loads and the guides used. For precise calculation of the drive motor, see R310EN 2710 and R310D0 2725.

Frictional torque

for motor attachment via timing belt side drive

$$M_R = \frac{M_{RS}}{i_{Rv}} + M_{RRv}$$

 $\mathsf{M}_{\mathsf{RS}} = \; \mathsf{M}_{\mathsf{RL}} + \mathsf{T}_{\mathsf{pr0}} + \mathsf{T}_{\mathsf{RD}}$

= gear reduction of timing belt side drive M_R = frictional torque at motor journal (Nm) M_{RS} = frictional torque of system M_{RRv}= frictional torque of timing belt side drive at motor journal M_{RI} = frictional torque of bearing (Nm) T_{pr0} = dynamic drag torque of

ball screw without seals T_{RD} = dynamic drag torque of the two seals (Nm)

(Nm)

Mass moment of inertia

$$m_{FAR \cdot B \cdot R} = m_{FAR} + m_{Rv} + m_M + m_{Br}$$

$$J_{fr} = \frac{J_s}{i_{Rv}^2} + J_{Rv} + J_{Br}$$

$$J_{tot} = J_{fr} + J_{M}$$

$$J_{tot} \quad = \frac{J_S}{i^2_{Rv}} + J_{Rv} + J_{Br} + J_M$$

The ratio of the mass moment of inertia of the payload to the motor mass moment of inertia is therefore as follows:

For handling:

$$6 \cdot J_{M} \geq J_{fr}$$

For processing:

$$1.5 \cdot J_{\text{M}} \geq J_{\text{fr}}$$

gear reduction of timing belt side drive

mass moment of inertia of external load (kgm²)

 J_{rotFAR} = rotating mass moment of inertia of FAR (kgm²)

total mass moment of (kgm²)

mass moment of inertia of system with external load (kgm²)

mass moment of inertia of motor (kgm²)

= mass moment of inertia of motor brake (kgm²)

= reduced mass moment of inertia of timing belt side drive at motor journal

(kgm²) m_{FAR} mass of FAR (kg) (kg)

 m_{fr} = mass of external load = mass of timing belt

side drive (kg) $m_M = mass of motor$ (kg)

= mass of brake (kg)

 $m_{FAR-B-R} = mass of drive unit with$ timing belt side drive and brake

(kg) = lead (mm) = 3.1416

Rotary speed

When attaching a gear motor, the gear mass moment of inertia and the gear ratio must also be included in the calculation.

$$n_1 = \frac{i_{RV} \cdot v \cdot 1000}{P}$$

$$n_1 < n_{Mmax}$$

$$n_2 = \frac{v \cdot 1000}{P} = \frac{n_1}{i}$$

$$n_2 < n_{max}$$

 i_{RV} = gear reduction of timing belt side drive n_1 = rotary speed (motor) (min⁻¹)

n_{Mmax} = maximum usable motor

speed (min⁻¹)

nax = maximum usable speed of the nut unit (min⁻¹)

n₂ = rotary speed of

ball nut (min^{-1}) P = lead (mm)

v = permissible linear speed (m/min)

Rough Sizing of the AOK Drive Unit

The following calculation formulas are provided to help users pre-select an appropriate drive motor for the AOK drive unit. Accurate layout information is essential, as the motor choice is dependent on the mounting orientation, the applied loads and the guides used. For precise calculation of the drive motor, see R310EN 2710 and R310D0 2725.

Frictional torque

for motor attachment via motor mount and coupling

for motor attachment via timing belt side drive

$$M_R = M_{RS}$$

$$M_{R} = \frac{M_{RS}}{i_{Rv}} + M_{RRv}$$

e gear reduction of timing belt side drive

M_R = frictional torque at motor journal

 $M_{RS} = frictional torque of system (Nm) \ M_{RRv} = frictional torque of timing belt side drive at motor journal (Nm)$

(Nm)

Mass moment of inertia

for motor attachment via motor mount and coupling

for motor attachment via timing belt

side drive

$$J_s = (k_1 + k_2 \cdot L + k_3 \cdot m_{fr}) \cdot 10^{-6}$$

$$J_{fr} = J_S + J_K + J_{Br}$$

 $J_S = (k_1 + k_2 \cdot L + k_3 \cdot m_{fr}) \cdot 10^{-6}$

$$J_{fr} = \frac{J_{S}}{i_{RV}^{2}} + J_{Rv} + J_{Fr}$$

$$J_{\text{tot}} = J_{\text{fr}} + J_{\text{M}} = \frac{J_{\text{S}}}{i_{\text{RV}}^2} + J_{\text{RV}} + J_{\text{Br}} + J_{\text{M}}$$

i_{RV} = gear reduction of timing belt side drive

 J_{tot} = total mass moment of inertia (kgm²)

J_{fr} = mass moment of inertia of external load (kgm²)

J_s = mass moment of inertia of system with external load (kgm²)

J_K = mass moment of inertia of coupling (kgm²)
 J_B = mass moment of inertia

of motor brake (kgm²)

 J_{M} = mass moment of inertia of motor (kgm²)

J_{RV} = reduced mass moment of inertia of timing belt side drive at motor journal (kgm²)

 k_1 , k_2 , k_3 = constants, see table k_1 = reference length

L = reference length (mm) $m_{fr} = mass of external load$ (kg)

The ratio of the mass moment of inertia of the payload to the motor mass moment of inertia is therefore as follows:

For handling:

$$6\cdot J_{\mathsf{M}} \geq J_{\mathsf{fr}}$$

For processing:

$$1.5 \cdot J_{\text{M}} \geq J_{\text{fr}}$$

Rotary speed

$$n_1 = \frac{i_{RV} \cdot v \cdot 1000}{P}$$

$$n_1 < n_{Mmax}$$

 n_1 = rotary speed (motor) (min⁻¹) n_{Mmax} = maximum usable motor

 $n_{Mmax} = maximum usable motor$ speed (min⁻¹)

P = screw lead (mm)

v = permissible linear speed (m/min)

Technical data for AOK

Constants for calculation of frictional torques and mass moments of inertia

AOK size	Ball screw size	Constants			Frictional torque at motor journal M _R
	d₀ x P	k ₁	k_2	k ₃	(Nm)
20	20x 5	16.9480	0.1004	0.6330	0.40
	20x20	40.6951	0.1004	10.1320	0.50
	20x40	116.6860	0.1004	40.5285	0.60
32	32x5	131.7373	0.7117	0.6330	0.80
	32x10	138.3865	0.7117	2.5330	0.90
	32x20	164.9833	0.6668	10.1320	0.90
	32x32	220.3047	0.6668	25.9380	1.00
40	40x5	378.5481	1.7830	0.6330	1.20
	40x10	354.1415	1.6070	2.5330	1.50
	40x20	404.2955	1.6070	10.1320	1.30
	40x40	604.9115	1.6070	40.5280	1.60

Technical data for couplings

AOK size	Ball screw size	Motor type		Mass moment of inertia	Weight
			M _{KN}	J _K	m _K
	d₀ x P		(Nm)	(kgm² 10 ⁻⁴)	(kg)
20	20x5/20/40	MSM 040B with/without brake	14.5	0.63	0.265
		MSK 040C with/without brake	19.0	0.60	0.260
		MSK 050C with/without brake	50.0	2.00	0.700
32	32x5/10/20/32	MSK 060C with/without brake	50.0	2.00	0.700
		MSK 076C with brake	98.0	3.90	0.900
40	40x5/10/20/40	MSK 076C with brake	98.0	3.90	0.900

Rough Sizing of the AGK Drive Unit

The following calculation formulas are provided to help users pre-select an appropriate drive motor for the AGK drive unit. Accurate layout information is essential, as the motor choice is dependent on the mounting orientation, the applied loads and the guides used. For precise calculation of the drive motor, see R310EN 2710 and R310D0 2725.

Frictional torque

for motor attachment via motor mount and coupling

for motor attachment via timing belt side drive

$$M_R = M_{RS}$$

$$M_R = \frac{M_{RS}}{i_{Rv}} + M_{RRv}$$

e gear reduction of timing belt side drive

M_R = frictional torque at motor journal

 M_{RR} = frictional torque of system (Nm) M_{RRv} = frictional torque of timing belt side drive at motor journal (Nm)

(Nm)

Mass moment of inertia

for motor attachment via motor mount and coupling

$$J_s = (k_1 + k_2 \cdot L + k_3 \cdot m_{fr}) \cdot 10^{-6}$$

$$J_{fr} = J_S + J_K + J_{Br}$$

 i_{RV} = gear reduction of timing belt side drive J_{tot} = total mass moment of

inertia (kgm²)

I_t = mass moment of inertia

of external load (kgm²)

s = mass moment of inertia of

system with external load (kgm 2) J_K = mass moment of inertia

of coupling (kgm²)

J_{p.} = mass moment of inertia

of motor brake (kgm²)

 J_M = mass moment of inertia of motor (kgm²)

J_{RV} = reduced mass moment of inertia of timing belt side drive at motor journal (kgm²)

drive at motor journal k_1 , k_2 , k_3 = constants, see table

L = reference length (mm) $m_{fr} = mass of external load$ (kg)

for motor attachment via timing belt side drive

$$J_{S} = (k_{1} + k_{2} \cdot L + k_{3} \cdot m_{fr}) \cdot 10^{-6}$$

$$J_{fr} = \frac{J_S}{i_{RV}^2} + J_{Rv} + J_{Br}$$

$$J_{\text{tot}} = J_{\text{fr}} + J_{\text{M}} = \frac{J_{\text{S}}}{i_{\text{RV}}^2} + J_{\text{RV}} + J_{\text{Br}} + J_{\text{M}}$$

The ratio of the mass moment of inertia of the payload to the motor mass moment of inertia is therefore as follows:

For handling:

$$6\cdot J_{\mathsf{M}} \geq J_{\mathsf{fr}}$$

For processing:

$$1.5 \cdot J_{\text{M}} \geq J_{\text{fr}}$$

Rotary speed

$$n_1 = \frac{i_{RV} \cdot v \cdot 1000}{P}$$

$$n_1 < n_{Mmax}$$

v = permissible linear speed as read off from chart

n_{Mmax} = maximum usable motor

v = permissible linear speed (m/min)

Technical data for AGK

Constants for calculation of frictional torques and mass moments of inertia

AGK size	Ball screw size	w size Constants			Frictional torque at motor journal M _R (Nm)			
	d _o x P	k,	k_2	k ₃	without SPU	1 pair SPU	2 pairs SPU	3 pairs SPU
20	20x 5	16.9480	0.1004	0.6330	0.40	0.40	0.50	0.50
	20x20	40.6951	0.1004	10.1320	0.50	0.60	0.70	0.80
	20x40	116.6860	0.1004	40.5285	0.60	0.80	1.00	1.20
32	32x5	131.7373	0.7117	0.6330	0.80	0.80	0.90	0.90
	32x10	138.3865	0.7117	2.5330	0.90	1.00	1.00	1.10
	32x20	164.9833	0.6668	10.1320	0.90	1.00	1.10	1.30
	32x32	220.3047	0.6668	25.9380	1.00	1.20	1.40	1.60
40	40x5	378.5481	1.7830	0.6330	1.20	1.20	1.30	1.30
	40x10	354.1415	1.6070	2.5330	1.50	1.60	1.70	1.80
	40x20	404.2955	1.6070	10.1320	1.30	1.50	1.60	1.80
	40x40	604.9115	1.6070	40.5280	1.60	1.90	2.30	2.60

Technical data for couplings

AGK size	Ball screw size	Motor type	Rated torque	Mass moment of inertia	Weight
			M _{KN}	J _K	m _K
	d₀ x P		(Nm)	(kgm² 10 ⁻⁴)	(kg)
20	20x5/20/40	MSM 040B with/without brake	14.5	0.63	0.265
		MSK 040C with/without brake	19.0	0.60	0.260
		MSK 050C with/without brake	50.0	2.00	0.700
32	32x5/10/20/32	MSK 060C with/without brake	50.0	2.00	0.700
		MSK 076C with brake	98.0	3.90	0.900
40	40x5/10/20/40	MSK 076C with brake	98.0	3.90	0.900

Calculation Example, FAR Drive Unit

Given data

A drive unit is to be selected and calculated for the table drive of a handling system. The table and the payload weigh 200 kg. The frictional drag of the guides has already been factored into the forces involved.

Operating conditions

The maximum linear speed in rapid approach mode is specified as 108 m/min. The service life of the system should be 40,000 operating hours with the ball screw operating 60% of the time.

The end fixity is specified as fixed-fixed. The loads, rotary speeds and discrete time steps are given in the table at right.

Length calculation

Example of a stroke and length calculation for FAR 40x40:

The required stroke is L_{Hmax} = 2500 mm.

The length $L_{\rm C}$ of the customer-built attachment (= interference contour) is 403 mm. Because of the installation conditions, the thread length is specified as 3063 mm.

$$\begin{array}{lll} L_{thr} & = L_{Hmax} + L_{C} + L_{N} \\ L_{thr} & = 2500 \text{ mm} + 403 \text{ mm} + 160 \text{ mm} \\ L_{thr} & = 3063 \text{ mm} \end{array}$$

Checking the linear speed

The rapid approach speed of 108 m/min can be attained by the drive unit FAR 40x40Rx6-3. The maximum permissible linear speed of 112 m/mm will not be exceeded (see table on page 83).

Since the end fixity is fixed-fixed, no further limitation of the linear speed is necessary. The chosen drive unit meets the requirements and the calculation can be continued.

Service life calculation Average rotary speed n_m

Average load F_m for variable load and variable speed

 $n_{m} = \frac{10}{100} \cdot 20 + \frac{22}{100} \cdot 100 + \frac{47}{100} \cdot 500 + \frac{21}{100} \cdot 2700$ $n_{m} = 826 \text{ min}^{-1}$

$$F_m = \sqrt[3]{17000}^3 \cdot \frac{20}{824} \cdot \frac{10}{100} + 7000^3 \cdot \frac{100}{824} \cdot \frac{22}{100} + 3000^3 \cdot \frac{500}{824} \cdot \frac{47}{100} + 2000^3 \cdot \frac{2700}{824} \cdot \frac{21}{100}}$$

Required service life L

(revolutions)

The life L can be calculated by transposing the formulas:

$$L = L_h \cdot n_m \cdot 60$$

 $F_{\rm m} = 3246 \, N$

 L_h = Machine operating hours · $\frac{Screw duty cycle}{Machine duty cycle}$

$$L_h = 40000 \cdot \frac{60}{100} = 24000 \text{ hours}$$

 $L = 24000 \cdot 826 \cdot 60$ $L = 1189 \cdot 10^6$ revolutions

Required basic dynamic load rating C_{reg}

$$C_{\text{req}} = 3246 \cdot \sqrt[3]{\frac{1189000000}{10^6}}$$
 $C_{\text{req}} \approx 34388 \,\text{N}$

Result and selection

At 34,388 N, the calculated required load rating of the drive unit is smaller than the given load rating C = 37,000 N for the size 40x40. The dimensioning of the drive unit therefore meets the service life requirement.

Cross check

Service life of the selected ball screw in revolutions

$$L = \left(\frac{37000}{3246}\right)^{3} \cdot 10^{6}$$

$$L \approx 1481 \cdot 10^{6} \text{ revolutions}$$

Service life in hours L_h

The life of the selected ball screw is thus greater than the required service life of 24,000 hours (including the duty cycle).

$$L_{h} = \frac{1481 \cdot 10^{6}}{826 \cdot 60}$$

$$L_{h} \approx 29883 \text{ hours}$$

Cross check of maximum permissible load

$$\begin{split} F_k &= f_{Fk} \cdot \frac{d_2^{\ 4}}{l_k^{\ 2}} \cdot 10^{\ 4} = 40.6 \cdot \frac{33.8^4}{3063^2} \cdot 10^{\ 4} = 56481 \ N \\ F_{kperm.} &= \frac{F_k}{2} = \frac{56481}{2} = 28241 \ N \\ F_{max} &= 17000 \ N \\ F_{max} &\leq F_{kperm.} \checkmark \\ \end{split}$$
 For a stretched screw, the following applies:
$$F_{kperm.} &= \frac{F_k}{2} + F_R \end{split}$$

Frictional torque for motor attachment via timing belt side drive

Calculation of the required drive torque under maximum axial load.

Comparison of the calculated drive torque with the permissible torque of the screw shaft end:

Recommended maximum torques for the geometry of screw end 51

$$\begin{split} M_{R} &= \frac{M_{RS}}{i_{RV}} + M_{RRV} \\ M_{RS} &= M_{RL} + T_{pr0} + T_{RD} \\ M_{R} &= \frac{M_{RL} + T_{pr0} + T_{RD}}{i_{RV}} + M_{RRV} \\ &= \frac{1.2 + 0.3 + 0.4}{1} + 0.6 \\ &= 2.5 \text{ Nm} \\ M_{ta} &= \frac{F \cdot P}{2000 \cdot \pi \cdot \eta} + M_{R} \\ &= \frac{17000 \cdot 40}{2000 \cdot \pi \cdot 0.9} + 2.5 \\ &= 122.7 \text{ Nm} \\ M_{ta} &< M_{scr perm.} = 150 \text{ Nm } \checkmark \end{split}$$

$$\begin{array}{ll} & \text{journal} & \text{(Nm)} \\ M_{RS} = \text{frictional torque of system} & \text{(Nm)} \\ M_{RRV} = \text{frictional torque of timing} & \text{belt side drive} & \text{(Nm)} \\ i_{RV} = \text{gear reduction of} & \text{timing belt side drive} & \text{(Nm)} \\ M_{RL} = \text{frictional torque of bearing} & \text{(Nm)} \\ T_{pr0} = \text{dynamic drag torque of} & \text{ball screw without seals} & \text{(Nm)} \\ T_{RD} = \text{dynamic drag torque of} & \text{the two seals} & \text{(Nm)} \\ M_{ta} = \text{drive torque} & \text{(from axial screw)} & \text{(Nm)} \\ \eta = \text{mechanical} & \end{array}$$

efficiency (approx. 0.9)

M_R = frictional torque at motor

Calculation Example, FAR Drive Unit

Mass moment of inertia for motor attachment via timing belt side drive

$$m_{FAR-B-R} = m_{FAR} + m_{RV} + m_M + m_{Br}$$

= 8.4 + 8.7 + 14 + 1.1
= 32.2 kg

$$\begin{array}{lll} m_{FAR \cdot B \cdot R} = & mass \ of \ system & (kg) \\ m_{FAR} & = & mass \ of \ FAR & (kg) \\ m_{RV} & = & mass \ of \ timing \ belt \\ & & side \ drive & (kg) \\ m_{M} & = & mass \ of \ motor & (kg) \\ m_{Br} & = & mass \ of \ motor \ brake & (kg) \end{array}$$

$$\begin{split} J_s &= J_{rotFAR} + (m_{FAR \cdot B \cdot R} + m_{fr}) \cdot \left(\frac{P}{20 \cdot \pi}\right)^2 \cdot 10^{-4} \\ &= 50.7 \cdot 10^{-4} + (32.2 + 200) \cdot \left(\frac{40}{20 \cdot \pi}\right)^2 \cdot 10^{-4} \\ &= 144.8 \cdot 10^{-4} \text{ kgm}^2 \end{split}$$

$$\begin{array}{lll} J_{\text{S}} &= \text{mass moment of inertia} \\ & \text{of system with} \\ & \text{external load} & (\text{kgm}^2) \\ J_{\text{rotFAR}} = \text{rotating mass moment} \\ & \text{of inertia of FAR} & (\text{kgm}^2) \\ m_{\text{fr}} &= \text{mass of external load} & (\text{kg}) \end{array}$$

$$J_{fr} = \frac{J_{S}}{I_{RV}^{2}} + J_{RV} + J_{Br}$$

$$= \frac{144.8}{1^{2}} + 84 + 3.6$$

$$= 232.4 \cdot 10^{-4} \text{ kgm}^{2}$$

$$J_{fr}$$
 = mass moment of inertia of external load (kgm²)

 J_{RV} = reduced mass moment of inertia of timing belt side drive at motor journal (kgm²)

 J_{Rr} = mass moment of inertia

$$J_{tot} = J_{fr} + J_{M}$$

$$= 232.4 + 43$$

$$= 275.4 \cdot 10^{-4} \text{ kgm}^{2}$$

of motor

$$\begin{aligned} 6 \cdot J_M &\geq J_{fr} \\ 6 \cdot 43 \cdot 10^{-4} &\geq 232.4 \cdot 10^{-4} \\ 258 \cdot 10^{-4} &\geq 232.4 \cdot 10^{-4} \ \checkmark \end{aligned}$$

Rotary speed

$$n_{1} = \frac{i_{RV} \cdot v \cdot 1000}{P}$$

$$= \frac{1 \cdot 108 \cdot 1000}{40}$$

$$= 2700 \frac{1}{min}$$

$$n_{1} < n_{Mmax}$$

$$2700 \frac{1}{min} < 5000 \frac{1}{min} \checkmark$$

$$i_{RV} = gear reduction of timing belt side drive (-)
 $n_1 = rotary speed (motor) (min^{-1})$
 $n_{Mmax} = maximum usable motor speed (min^{-1})$
 $P = screw lead (mm)$
 $v = permissible linear speed (m/min)$$$

$$n_{2} = \frac{v \cdot 1000}{P} = \frac{n_{1}}{i_{RV}}$$

$$= \frac{108 \cdot 1000}{40}$$

$$= 2700 \frac{1}{min}$$

$$n_{2} < n_{max}$$

$$2700 \frac{1}{min} < 2800 \frac{1}{min} \checkmark$$

$$n_2$$
 = rotary speed (ball nut) (min⁻¹)
 n_{max} = maximum usable speed of the nut unit (min⁻¹)

Calculation Example, AGK Drive Unit (and similarly for AOK)

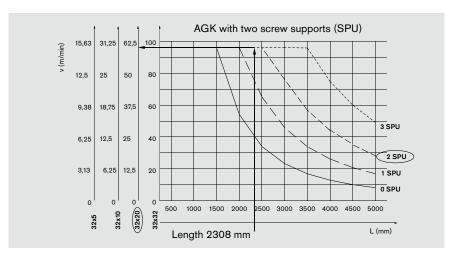
Given data

The application example is a handling axis. The table mass is 100 kg. The frictional drag of the guides has already been factored into the forces involved. The rapid approach speed is v = 60 m/min.

Operating conditions

The service life of the system should be 40,000 operating hours with the ball screw operating 50% of the time.

Length calculation


Example of a stroke and length calculation for AGK 32x20 with two screw supports:

The required stroke is 1650 mm. By using 2 screw supports, the maximum linear speed can be achieved over the entire stroke (see relevant charts).

$$\begin{array}{lll} L &=& L_{Hmax} + L_{C} + L_{N} \\ L &=& 1650 \text{ mm} + 204 \text{ mm} + 454 \text{ mm} \\ L &=& 2308 \text{ mm} \\ L_{AGK} &=& L + L_{2} + B_{1} + B_{11} \\ L_{AGK} &=& 2308 \text{ mm} + 58 \text{ mm} + 60 \text{ mm} + 70 \text{ mm} \\ L_{AGK} &=& 2496 \text{ mm} \end{array}$$

Checking the linear speed

The desired speed of 60 m/min is equal to the permissible speed of 60 m/min:

For comparison: Without screw supports, the maximum linear speed would be limited to 25 m/min.

Service life calculation Average rotary speed n_m

Average load $\boldsymbol{F}_{\!\scriptscriptstyle m}$ for variable load and variable speed

$$n_{\rm m} = \frac{15}{100} \cdot 200 + \frac{30}{100} \cdot 500 + \frac{30}{100} \cdot 1500 + \frac{25}{100} \cdot 3000$$
 $n_{\rm m} = 1380 \; {\rm min}^{-1}$

$$F_{m} = \sqrt[3]{2000^{3} \cdot \frac{200}{1380} \cdot \frac{15}{100} + 2000^{3} \cdot \frac{500}{1380} \cdot \frac{30}{100} + 1800^{3} \cdot \frac{1500}{1380} \cdot \frac{30}{100} + 800^{3} \cdot \frac{3000}{1380} \cdot \frac{25}{100}}$$

$$F_{m} = 1477 \text{ N}$$

Required service life L

(revolutions)

The life L can be calculated by transposing the formulas:

$$\begin{array}{lll} L & = L_{\text{h}} \cdot n_{\text{m}} \cdot 60 \\ L_{\text{h}} & = \text{Machine operating hours} \cdot & \frac{\text{Screw duty cycle}}{\text{Machine duty cycle}} \\ L_{\text{h}} & = 40000 \cdot \frac{50}{100} = 20000 \text{ h} \\ L & = 20000 \cdot 1380 \cdot 60 = 1656 \cdot 10^6 \text{ revolutions} \end{array}$$

Required basic dynamic load rating C_{req}

$$C_{\text{req}} = 1477 \cdot \sqrt[3]{\frac{1656000000}{10^6}}$$
 $C_{\text{req}} \approx 17474 \text{ N}$

Calculation Example, AGK Drive Unit

Result and selection

At 17,474 N, the calculated required load rating of the drive unit is smaller than the given load rating C = 19,700 N for the size 32x20. The dimensioning of the drive unit therefore meets the service life requirement.

Cross check

Service life of the selected ball screw in revolutions

$$L = \left(\frac{19700}{1477}\right)^3 \cdot 10^6$$
 $L \approx 2373 \cdot 10^6$ revolutions

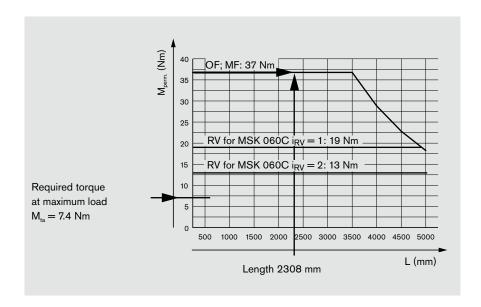
Service life in hours L_h

The life of the selected ball screw is thus greater than the required service life of 20,000 hours (including the duty cycle).

$$L_{h} = \frac{2373 \cdot 10^{6}}{1380 \cdot 60}$$

$$L_{h} \approx 28659 \text{ hours}$$

Checking the drive torque


Calculation of the required drive torque under maximum axial load. Two pairs of SPUs were used.

$$\begin{aligned} M_{R} &= M_{RS} \\ M_{R} &= 1.1 \text{ Nm} \\ M_{ta} &= \frac{F \cdot P}{2000 \cdot \pi \cdot \eta} + M_{R} \\ &= \frac{2100 \cdot 20}{2000 \cdot \pi \cdot 0.9} + 1.1 \\ &= 8.5 \text{ Nm} \end{aligned}$$

$$\begin{array}{lll} M_{R} &=& \text{frictional torque} \\ && \text{with 2 pairs SPU} & \text{(Nm)} \\ M_{RS} &=& \text{frictional torque of system} & \text{(Nm)} \\ P &=& \text{lead} & \text{(mm)} \\ \eta &=& \text{mechanical} \\ && \text{efficiency (approx. 0.9)} \end{array}$$

The required torque lies below the permissible drive torque according to the chart.

Permissible torque

Even at maximum loading, the required torque is well below the permissible value.

(-)

(min⁻¹)

 (min^{-1})

(mm)

Rough sizing of the drive unit

A motor MSK 060C with brake is specified for the drive. Motor attachment is via motor mount and coupling.

$$\begin{split} J_S &= (k_1 + k_2 \cdot L + k_3 \cdot m_{fr}) \cdot 10^{-6} \\ &= (164.9833 + 0.6668 \cdot 2308 + 10.1320 \cdot 100) \cdot 10^{-6} \\ &= 2717 \cdot 10^{-6} \text{ kgm}^2 \\ \\ J_{fr} &= J_s + J_k + J_{Br} \\ &= 2717 \cdot 10^{-6} + 2 \cdot 10^{-4} + 0.59 \cdot 10^{-4} \\ &= 2976 \cdot 10^{-6} \text{ kgm}^2 \\ \\ J_{tot} &= J_{fr} + J_M \\ &= 2976 \cdot 10^{-6} + 8.0 \cdot 10^{-4} \\ &= 3776 \cdot 10^{-6} \text{ kgm}^2 \\ \\ 6 \cdot J_M \geq J_{fr} \\ 6 \cdot 8 \cdot 10^{-4} \geq 2976 \cdot 10^{-6} \\ 4800 \cdot 10^{-6} \geq 2976 \cdot 10^{-6} \checkmark \end{split}$$

Rotary speed

Design Calculation Service Form

Bosch Rexroth AG Linear Motion and Assembly Technol	blogios	Sender	
Ernst-Sachs-Straße 100	ologies		
97424 Schweinfurt, Germany			
Fax +49 9721 937-288			
Customers can also perform the tec	hnical calcula-		
tions themselves using our WINKG		L	_
Application: New design	Redesign		
Operating conditions			
Loads (N)	Rotary speeds (min-1)	Discrete time steps (%)	
F ₁ =	at n ₁ =		
$F_2 = $	4		
$F_3 = $	3	19	
F ₄ =	7	• • • • • • • • • • • • • • • • • • • •	
$F_5 = $	<u> </u>	,,,	
Average load	Average rotary speed	Sum of discrete time steps	
F _m =		_	
Maximum static load:	N		
Required service life:	_ operating hours or	x 10 ⁶ revolutions of ball screw	
Orientation of screw	horizontal vertical		
FAR	Application details:		
	Application details.		
AOK	Layout: Please attach all available dra	wings/sketches!	
AGK 🗀			
AGR			
	Drawing enclosed		
Lubrication method:			
Operating temperature:	_ °C - min/max/	_°C	
Exceptional operating conditions:			
From OEM U	Jser Distributor		
Company:	Name: Departr	ment:	
Address:	Telepho	ne:	
	Telefax:		
	e-mail:		

Inquiry and Order Forms

Inquiry and Order Form, FAR

Bosch Rexroth AG Linear Motion and Assembly Technologies Ernst-Sachs-Straße 100 97424 Schweinfurt, Germany

Fax +49 9721 937-288

Sender			_

ᆫ

Order example: Drive u	nit FAR 40		Length specification options - Only one length specification
Ordering data		Explanation	necessary
Size	= FAR 40		L _{H2}
Ball screw	=40x20	d _o x P	H2
Length	= L _{ov}	Only one length specification	THE PART OF THE PA
	= 560 mm	necessary	
Ball nut sealing type	= 01	Standard seal	
Preload	= 02	5%	
Screw tolerance grade	e = T5		
Screw end, left	= S	Hex socket	
Screw end, right	= S	Hex socket	
Lubrication	= 01	Basic lubrication and anti-corrosion	sil
Motor attachment	= RV	With timing belt side drive	
Attachment kit	= 011	For i = 1.25	L _{thr}
Motor	= 093	MSK 076C with brake	L _{ov}
Documentation	= 001	Lead report	
		(incl. standard test report)	
Ball screw Length Ball nut sealing type Preload Screw tolerance grade Screw end, left Screw end, right Lubrication Motor attachment Attachment kit Motor Documentation			
Quantity Order Comments: From Company: Address:	of:	pcs, per month, Name Depa Telep	rtment:

Inquiry and Order Forms

Inquiry and Order Form, AOK

Γο .
Sender

L

For explanations of the ordering parameters, see page 42/43, "Configuration and Ordering Data."

Order example: Drive uni	t AOK 20		Length specification options - Only one length specification			
Ordering data		Explanation	necessary			
Size	= AOK 20	1	L _{Hmax} /2 L _{Hmax} /2			
Ball screw	= 20x20	d _o x P				
Length	= L	Only one length specification				
	= 350 mm	necessary				
Ball nut sealing type	= 01	Standard seal	_ L L _{thr} →			
Preload	= 01	Reduced backlash	Lov			
Screw tolerance grade	= T7		L _{AOK}			
Screw end type,	= 31	Fixed-floating end fixity	- L _{Hmar} /2 L _{Hmar} /2			
right-hand side						
Lubrication	= 01	Basic lubrication and anti-corrosion oil	Ţ│ ┗ ╪═┩ <u>└╫┆</u> ╫┘			
Motor attachment	= MF01	With motor mount	Lithr			
Attachment kit	= 006	For motor MSM 040B w/o brake	L _{AOK}			
Motor	= 074	MSM 040B w/o brake	 			
Documentation	= 001	Lead test report				
To be completed by of AOK drive unit Size Ball screw Length Ball nut sealing type Preload Screw tolerance grade Screw end type, right-h Lubrication Motor attachment Attachment kit Motor Documentation	= = = = = and side = = = = =	Inquiry				
Quantity Order o Comments:	f:	_ pcs, per month,	per year, per order, or			
From Company: Address:		Name: Depart Teleph Telefax	tment: one:			

Inquiry and Order Form, AGK

Bosch Rexroth AG
Linear Motion and Assembly Technologies
Ernst-Sachs-Straße 100
97424 Schweinfurt, Germany

Fax +49 9721 937-288

Sender			٦

ᆫ

For explanations of the ordering parameters, see page 66/67, "Configuration and Ordering Data."

Order example: Drive unit	AGK 20		Length specification options - Only one length specification				
Ordering data Explanation			necessary				
Size	= AGK 20						
Ball screw	= 20x20	d _o x P	L ₂ B ₁ L _N /2 L _{Hmax} /2 L _C L _{Hmax} /2 L _N /2 B ₁₁				
Length	= L	Only one length specification					
	= 1350 mm	necessary	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Ball nut sealing type	= 01	Standard seal					
Preload	= 01	Reduced backlash	L _{thr}				
Screw tolerance grade	= T7		L _{ov}				
Lubrication	= 01	Basic lubrication and anti-corrosion of	-				
Ball nut enclosure	= MA02						
Sealing strip	= 01	Steel					
Screw support	= 02	2 pairs SPU					
Motor attachment	= MF01	With motor mount					
Attachment kit	= 006	For motor MSM 040B with brake					
Motor	= 075	MSM 040B with brake					
Documentation	= 002	Torque test report					
		(incl. standard test report)					
To be completed by of AGK drive unit Size Ball screw Length Ball nut sealing type Preload Screw tolerance grade Lubrication Ball nut enclosure Sealing strip Screw support Motor attachment Attachment kit Motor Documentation	=						
Quantity Order of Comments: From Company: Address:	::p	cs, per month, p Name: Depart Telepho Telefax	ment:				

Bosch Rexroth AG Linear Motion and Assembly Technologies Ernst-Sachs-Straße 100 97424 Schweinfurt, Germany Tel. +49 9721 937-0 Fax +49 9721 937-275 www.boschrexroth.com/brl

Australia

Bosch Rexroth Pty. Ltd. 3 Valediction Road Kings Park, NSW 2148, Sydney Tel. +61 2 9831 7788 Fax +61 2 9831 5553

Great Britain

Bosch Rexroth Limited Cromwell Road St. Neots, Huntingdon Cambs. PE19 2ES Tel. +44 1480 223 298

Fax +44 1480 470 789

Canada

Bosch Rexroth Canada Corp. 3426 Mainway Drive Burlington, Ontario L7M 1A8 Tel. +1 905 335-5511 Fax +1 905 335-4184

USA

Bosch Rexroth Corporation 14001 South Lakes Drive Charlotte, NC 28273 Tel. +1 800 REXROTH +1 800 739 7684

Fax +1 704 583 0523

Singapore

Bosch Rexroth Pte. Ltd. 15D Tuas Road 638520 Singapore Tel. +65 6861 8733 Fax +65 6861 1825

Your sales partner Subject to technical modifications

© Bosch Rexroth AG 2007 Printed in Germany - p 2007/-/-/-Drive Units with Ball Screw Drives R310EN 3304 (2007.05)

EN • BRL/MKT2