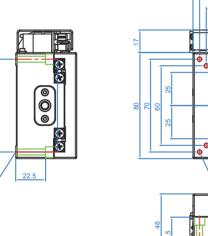
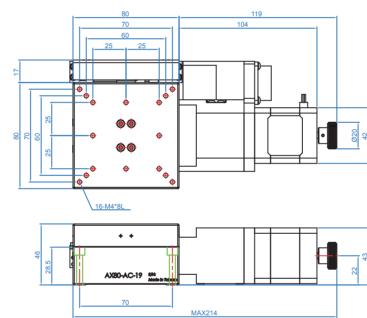


Motorized Linear Stage

Index




Motorized X-axis Stage	- P02
Motorized Horizontal Z-axis Stage	P03
Motorized Rotation Stage	· P04
Motorized Rotation Stage	· P05
Motorized Vertical Rotation Stage	P06
Motorized Rotation Stage	· P07
Motorized α-axis Goniometer Stage	· P08
Motorized XXY-axis Alignment Stage	• P09
GAS Model Explanation	• P10
Mechanical Operating Theorem	· P11
Precision Measurement	P12
Moving Distance Calculating Formula	·P13~14
Model-GAS Outline Scheme	·P15~16

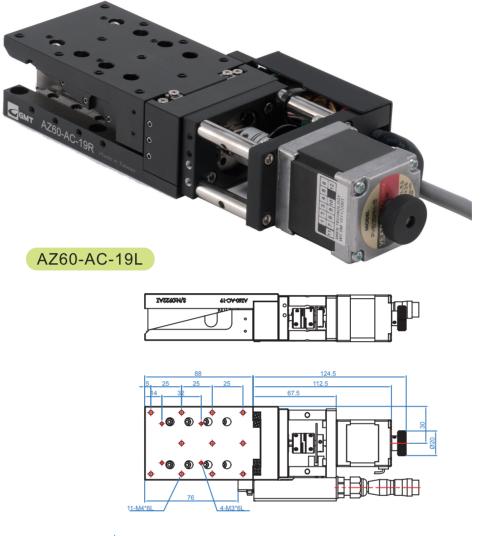
On the basis of the execution of the best service and product innovation, GMT hereby would have this declaration of retaining the right for engineering change. If any drawings or articles revised and added in the catalogs, there would be no extra further notice. To get most up-to date information, please contact our agent or sales while necessary.

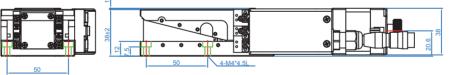
1

Motorized

Specification

20


4-M4*6L

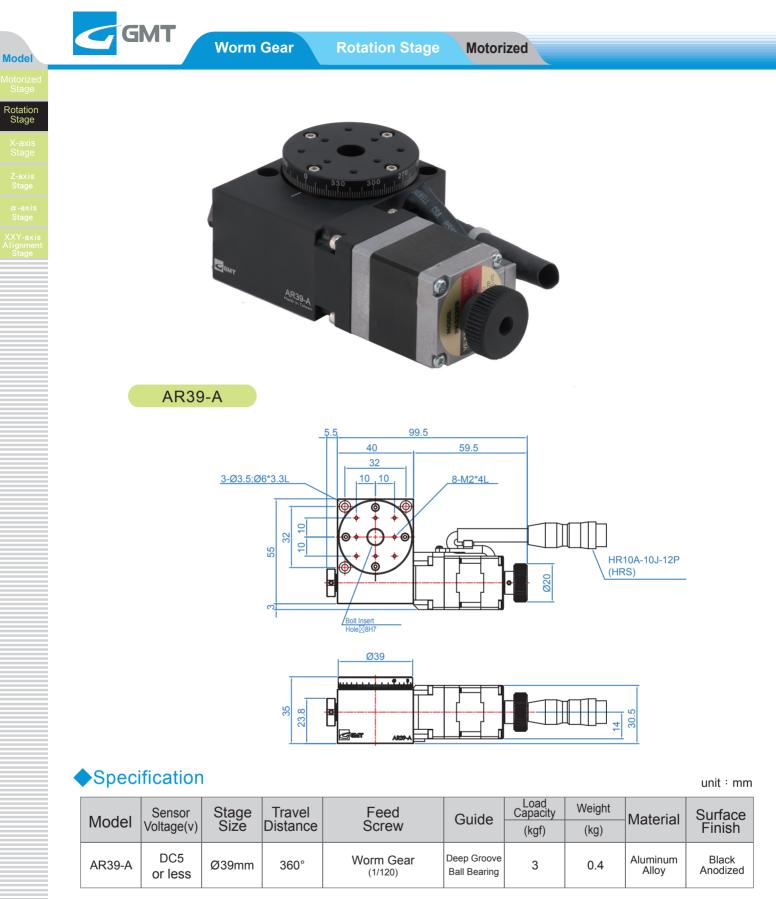

Model	Stage Size	Travel Distance	Weight (kg)	Feed Screw	Guide	Material	Surface Finish
AX80-AC-19	80*80	30	1.4	Ball Screw Ø8 Lead 1	Crossed- roller Guide	Aluminum Alloy	Black Anodized

Accuracy Specification

Resolutio	on(/ pulse)	MAX Speed Positioning		Repeated Positioning	Load Capacity	Lost	Racklash	Parallelism	Driving
Full	Half	mm/sec	Accuracy	Accuracy		Motion	Dackiasii	Falallelisti	Parallelism
1 µm	0.5 μm	10	5μm or less	±0.3μm	20	1 μ m or less	$0.5 \ \mu m$ or less	50 µm	10 μm or less

www.gmtlinear.com

Specification


Model	Stage Size	Travel Distance	Weight (kg)	Feed Screw	Guide	Material	Surface Finish
AZ60-AC-19L	60*60	4	1.14	Ball Screw Ø8 Lead 1	Crossed- roller Guide	Aluminum Alloy	Black Anodized

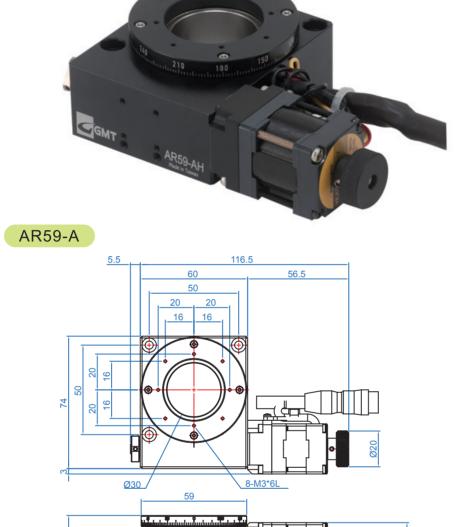
Accuracy Specification

Resolutio	n(/ pulse)	MAX Speed	Positioning	Repeated Positioning	Load Capacity	Driving Parallelism	
Full	Half	mm/sec	Accuracy	Accuracy	(kg)		
0.25 μm	0.125 μm	25	7 μm or less	±0.05μm or less	7	50 μ m or less	

Model

unit : mm

Accuracy Specification


Moment Repeated Resolution(/ pulse) MAX Speed Lost Positioning Positioning Model Rigidity Backlash Parallelism /sec [5kHz] Accuracy Motion Full Half Accuracy ("/Ň.cm) within 0.1° 50 µm AR39-A 0.74 0.006° 0.003° 30° ±0.01° 0.05° ±0.01° or less or less

 \bigstar Eccentricity is 5µm or less ; plane fluctuation is 30µm or less \circ

unit : mm

5

GMT GLOBAL INC.

Motorized

Specification

Worm Gear

Rotation Stage

Model	Stage Size	Travel Distance	Weight (kg)	Feed Screw	Guide	Material	Surface Finish
AR59-A	Ø59	360°	0.6	Worm Gear (1/180)	Deep Groove Ball Bearing	Aluminum Alloy	Black Anodized

14

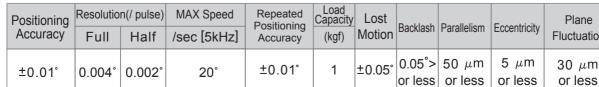
Accuracy Specification

35 24.5 17

Load Capacity Repeated Moment Rigidity Resolution(/ pulse) MAX Speed Lost Positioning Plane Positioning Backlash Parallelism Eccentricity Motion Accuracy Half /sec [5kHz] Fluctuation ("/N.cm) Full Accuracy (kgf) <u>+0.05</u>° 0.05°> 50 µm 5 μm 30 µm ±0.01° 0.84 0.004° 0.002° 20° ±0.01° 3 or less or less or less or less

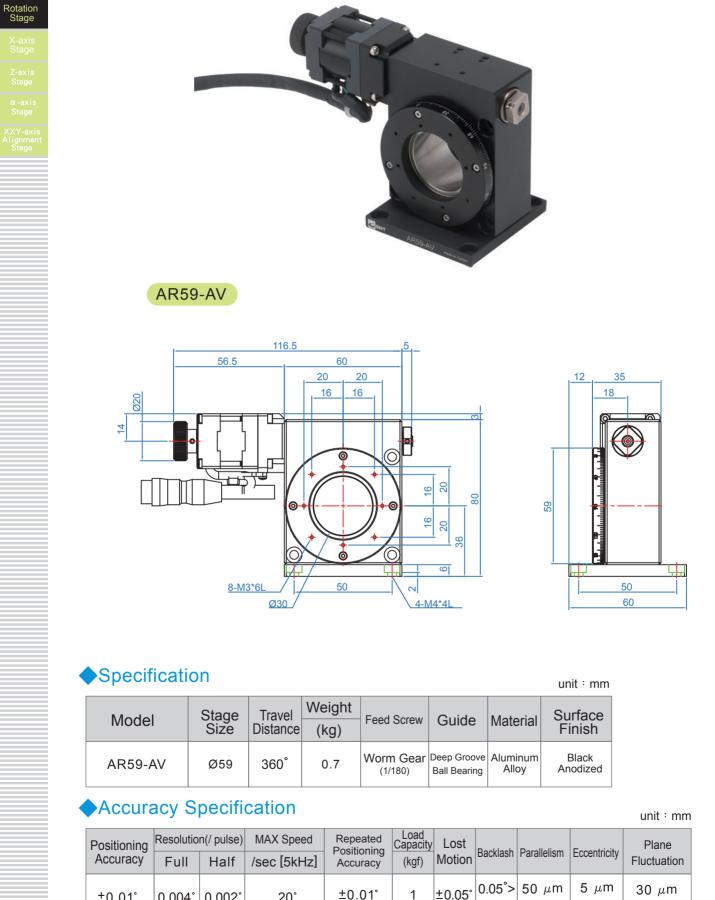
4-M2*5L

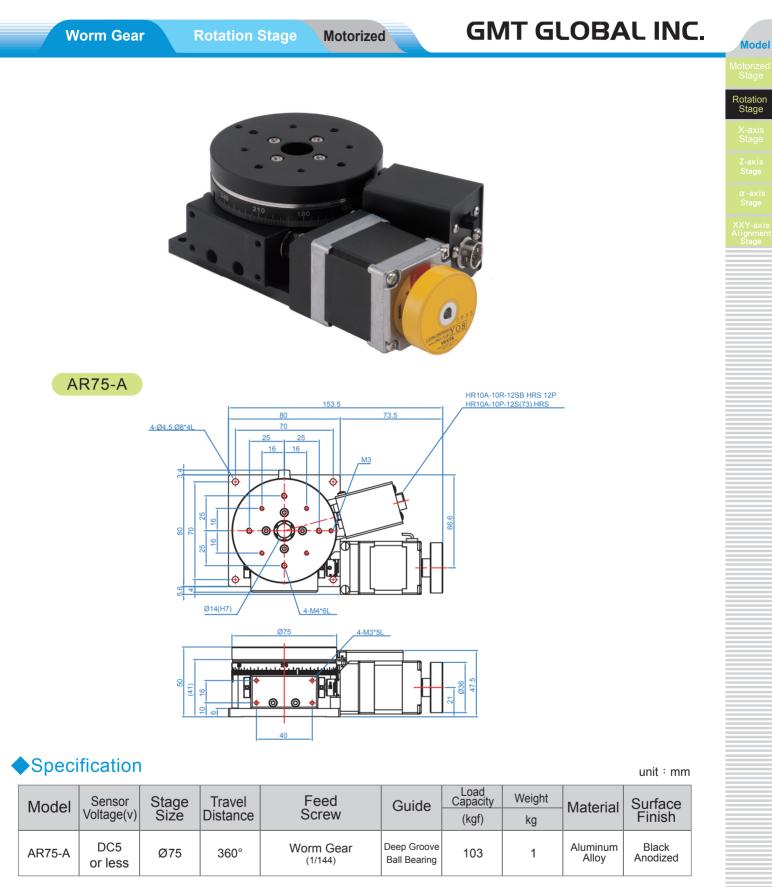
unit : mm


Rotation Stage

Model

GMT

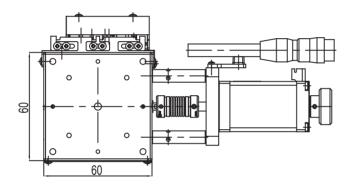

Model

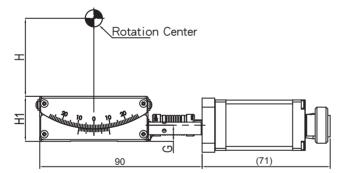

Worm Gear

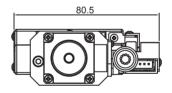
Vertical Rotation Stage

Accuracy Specification

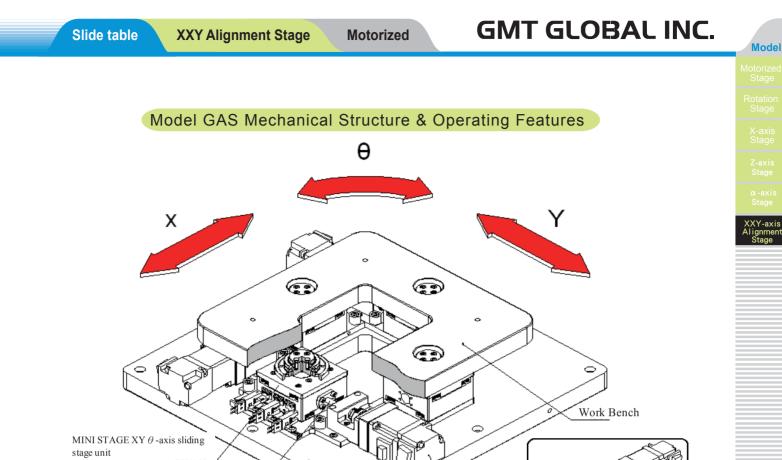
Model	Positioning	Positioning Moment Rigidity Accuracy ("/N.cm)	Resolution(/ pulse)		MAX Speed	Repeated	Lost	Backlash	Parallelism
Model	Accuracy		Full	Half	/sec [5kHz]	Positioning Accuracy	Motion	Backlash	Falallelisti
AR75-A	±0.03°	0.15	0.0025°	0.00125°	25°	±0.005°	0.005° or less	0.005° or less	120 μm or less


 \bigstar Eccentricity is 5µm or less ; plane fluctuation is 20µm or less \circ




AXG6-60CSW

5	5-Phase Stepp	oing Motor Dri	ver
Туре	ORIENTAL	TROY	SANYO DENKI
Model	CRD5100P	TR515B	PMM-BD-53130 PMM-BD-53130
Dimension WxDxH unit:mm	45X65X25	65X90X32.5	64X70X52
Weight	40g	280g	200g


Model	Н	H1	G	Q
AXG6-35CSW	35	25	9	10
AXG6-60CSW	60	20	7	8.5
AXG6-80CSW	80	20	7	8.5

Specification and accuracy

★MAX Speed 5.6° /sec[5000pps]

★Repeated positioning accuracy is ± 0.003°; lost motion is 0.02° or less.

Madal	Stage	Height of	Travel Rotation Center		Resolution(/ pulse)	Load Capacity	Weight	Material	Surface
Model	Size	Rotation Center	Distance	Deflection Accuracy	Full	(kgf)	(kg)	matchai	Finish
AXG6-35CSW		35	±25°		0.085°		0.72	Brass Alloy	Black Fluororesin
AXG6-60CSW	60*60	60	±20°	Ø0.1mm	0.072°	6			
AXG6-80CSW		80	±15°		0.065°		0.58		

Basic Structure Design of Model GAS

Apply the innovative extra-thin stage module.

The unique module structure of equipping the MINI STAGE XY0 sliding units and special cross-roller bearing at the four ends located between the base and bench.

Respective Large Work-piece

The standard large-size stage with the largest work bench (1500mm×1500mm) Can be applied to the bigger size over adding more modules.

Ball Screw

Base

Light-weight and Extra-thin

It creates the wing-free thin & lighter mechanism by applying the $XY\theta$ module.

Hollow Structure

Motor

It obtains bigger space at the center of bench & base, used for the optical inspection devices or conduction tester

High Rigidity & Precision

The module XY-axis stage and special cross-roller bearings have been pre-loaded, to perform the whole unit high precision and rigidity.

Applications

- The LCD manufacturing equipments & inspecting devices
- The semiconductor manufacturing equipments & inspecting devices
- Screen printing machines
- The PCB manufacturing equipment & inspecting devices

Module

Slide table XXY Alignment Stage Motorized

GAS Model Explanation

GAS01 - 250

Work bench size (Example: 250 = 250mmx250mm)

Nominal Model Number

Model GAS Mechanical Specification

	GA	S01		GAS02		GAS03		
Nominal Model Number	250	350	400	500	750	1000	1500	
Work-bench Size (mm)	250×250	350×350	400×400	500×500	750×750	1000×1000	1500×1500	
Stroke (mm)	10×10×6°	10×10×4°	10×10×7°	10×10×5°	10×10×3°	10×10×4°	10×10×2°	
Encoder Resolution (P/R)	20	048		8192	2 (13-bit serial	encoder)		
Ball-screw Lead Length (mm)		1		2			4	
Repeated Positioning Accuracy (µm)	±1							
Parallelism (µm)	30	40	50	80	180	300	700	
Load (Kg)	2	20		50	150			
Rated Static Load (kN)	3	4.1		54	127.2	254.4		
Weight (Kg)	18	23	37	44	63	600	1150	
Motor Model No.	Servo/Step	ping (50W)	Se	ervo/Stepping (1	Servo/Stepping (200W)			
Driver Model No.	Universal Pul	se Type (50W)	Unive	rsal Pulse Type	e (100W)	Universal Puls	e Type (200W)	
Micro-optic Sensor Model No.(OMRON)			EE-SX	672 (Connecto	or: EE-1001)			
Grease Selection	LVP/LOT-17993 Grease (DU PONT Krytox)							
Bench & Base Materials/Surface Treatment	6061T651/B	lack Anodized	7075T651/Black Anodized			S50C/Black Chrome Plating		

O 1. θ-stroke is generated while the work-bench is positioned in the middle of XY-axis Stroke.

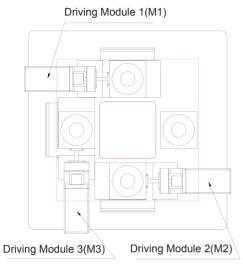
- O 2. Power supplied to the motor driver is AC100V (220V as an optional). (Others: AC100V)
- O 3. The cable connecting the motor & driver is attached (3m).
- O 4. Client is expected to perform final adjustment of the micro-optic sensor position.

★ The spec of this alignment stage is within 20±2°C.

Ν	Minimum Resolution of Each Axis										
Nominal model number	X - Axis (µm)	Y - Axis (µm)	θ - Axis (sec)								
GAS01-250	0.12	0.12	0.29								
GAS01-350	0.12	0.12	0.19								
GAS02-400	0.24	0.24	0.34								
GAS02-500	0.24	0.24	0.25								
GAS02-750	0.24	0.24	0.15								
GAS03-1000 0.49		0.49	0.25								
GAS03-1500	0.49	0.49	0.16								

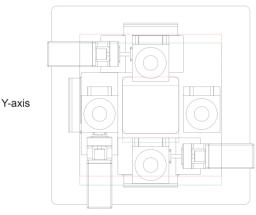
★The minimum resolution of GAS01 represents the 4x resolution of

Mechanical Operating Theorem


The model GAS alignment stage applies the combination of axis-X1, X2 & Y movements as graphically displayed in the following picture, which can perform various stage operations (the green is the changed locations).

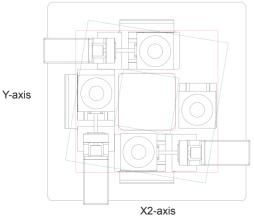
▼Reference Position

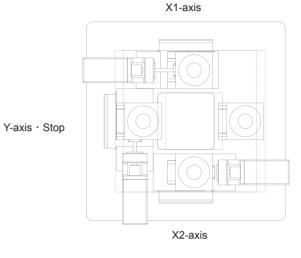
▼X-direction Moving (M1 & M2 Driving)


α-axis Stage XXY-axis Alignment

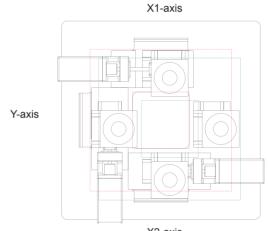
Model

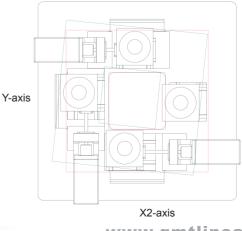
▼Y-direction Moving (M3 Driving)


X1-axis · Stop



X2-axis · Stop

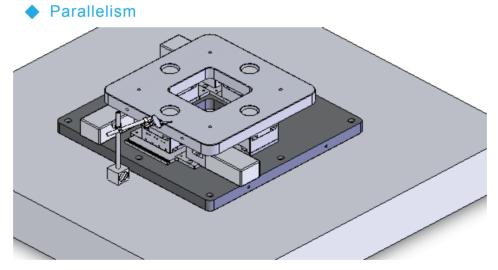

Bench-center Spinning (M1, M2 & M3 Driving)


▼Diagonal Moving (M1, M2 & M3 Driving)

X2-axis

Spinning Movement (M1, M2 & M3 Driving)

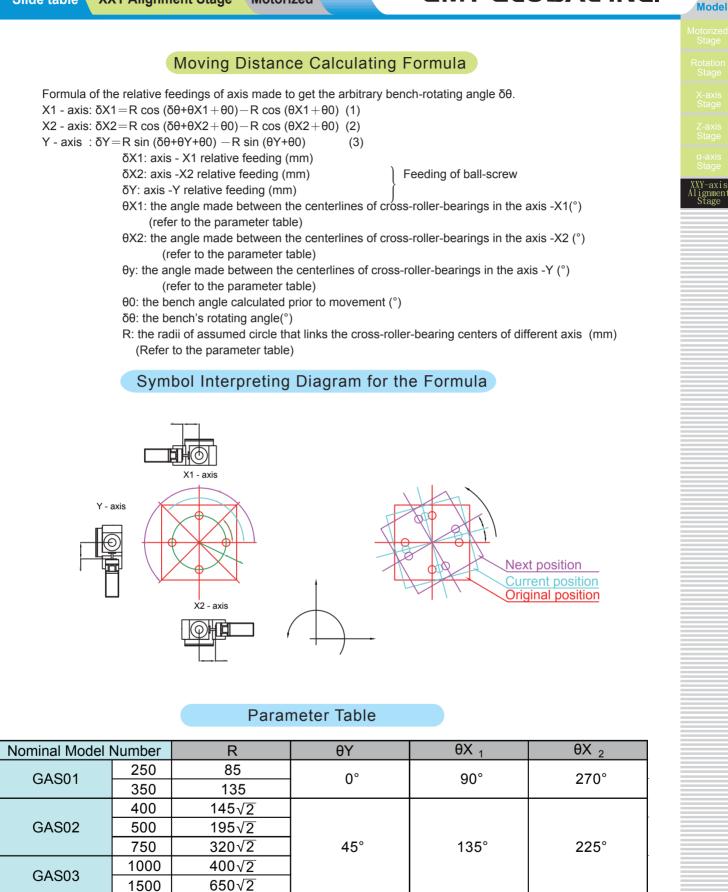
X1-axis


www.gmtlinear.com

Precision Measurement

Repeated Positioning Accuracy

Use the length-measuring laser interferometer to make repetitive positioning procedures for seven times in the same direction at any chosen point and measure the respective stop positions; find half of the maximum deviation. Perform measurements at center and both ends of the moving distance; pick the maximum value as the measured value; and add the "±" to the half of maximum deviation value.


Put the alignment stage onto the bench under inspection; fully make measurements by sliding the test indicator. Now locate the bench at the stroke-middle point. Use the maximum deviation made during the bench-measuring zone as the measuring value.

Notes in Operation:

Avoid equipping this alignment stage at the following environments

- % The ambient temperature is beyond the 0~40°C range or the RH is above 85%, or there is any condensate, corrosive gas or inflammable/combustible gas generated.
- % The area with Fe or other medium powders, dust, oil mist, cutting fluid, water, salt or organic-solvent-splashing condition.
- % The place under direct sunbeam or radiation heat. % The place with intense E/M field.
- ※ The place under vibration or shocks.

Model

Precision Measurement

[Example of Calculation]

Model No.: GAS02-400

Moving Mode: take the axis stroke-center as the original point; find the feeding of each axis by letting the upper sliding stage follow the following moving sequences:

- (1): Parallel moving by X-direction: +1mm, Y-direction: +0.5mm.

(2): $+2^{\circ}$ spin around the bench center.

 \downarrow

(3): Perform -0.3° spin from state (2) above.

Steps

First, not to calculate the movement in X or Y direction; use the existed values as the axis-feeding values. Next, calculate the $+2^{\circ}$ spinning.

 $\theta X1 = 135^{\circ}$

The parameter value of GAS01-400 is $\theta X1 = 135^{\circ}$ found from the parameter table.

 $R=145\sqrt{2}$ $\theta Y = 45^{\circ}$

θX2=225°

Or follow the moving mode condition to get that

 $\theta 0 = 0^{\circ}$ (since the current position is the initial one.)

 $\delta\theta \!=\! 2^\circ$

Feed the aforesaid data into Formula (1), (2) & (3), we thus can calculate the data regarding axis-X1 as $\delta X1 = 145\sqrt{2} \cos (2+135+0) - 145\sqrt{2} \cos (135+0) = -4.97210 \text{ (mm)}$

And calculate the axis X2 and axis-Y in the same way, the result is shown in below.

 $\delta X2\!=\!+5.14876~(\,\text{mm}\,)$

 $\delta Y=+4.97210~(\text{mm})$

Finally, find the feedings of each of the axis after rotating - 0.3° from the current status. Per the condition of action mode we get that

 $\theta 0 \!=\! 2^{\circ}$

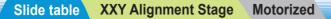
 $\delta\theta{=}{-}~0.3^{\circ}$

Feed the data into Formula (1), (2) & (3), we thus can calculate the data regarding axis-X1 as $\delta X1 = 145\sqrt{2}\cos((-0.3) + 135+2) - 145\sqrt{2}\cos(135+0)$ =+0.73431(mm)

And calculate the axis X2 and axis-Y in the same way, the result is shown in below.

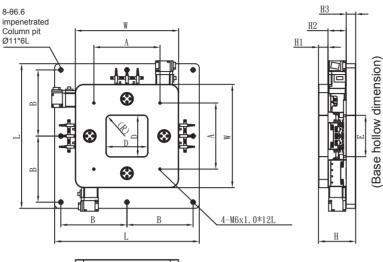
 $\delta X2 = -0.78333 \ (mm)$

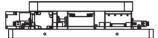
 $\delta Y = - \ 0.73431 \ (\,\text{mm}\,)$


Calculation Result

[] means the absolute feeding value relative to the original point.

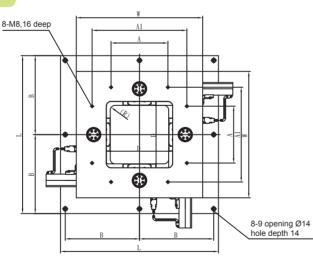
Unit: mm

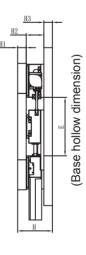

Axis	Relative Feeding							
	X-direction:+1mm	Y-direction:+0.5mm	Spin:+2°	Spin:-0.3°				
X1	+ 1	0	- 4.97210	+ 0.73431				
~ 1	【+ 1】	[0]	[- 3.97210]	[- 3.23779]				
X2	+ 1	0	+ 5.14876	- 0.78333				
	(+ 1)	[0]	【+ 6.14876】	[+ 5.36543]				
Y	0	+ 0.5	+ 4.97210	- 0.73431				
	[0]	【+ 0.5】	【+ 5.47210】	(+ 4.73779)				

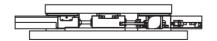

XXY-axis Alignment

Model-GAS Outline Scheme

GAS01

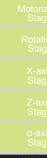




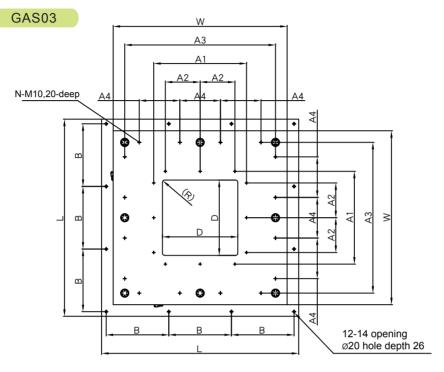

Unit: mm 【Common dimension】 Height: H=90, H1=23, H2=44, H3=23

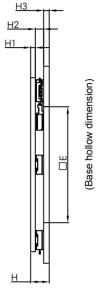
Nominal Model Number	Maximum Stroke Length	Work Bench			Work Bench			
		L	В	E	W	D	А	(R)
GAS01-250	10×10×6°	350	160	80	250	80	160	10
GAS01-350	10×10×4°	450	210	180	350	180	220	10

GAS02



Unit: mm [Common dimension] Height: H=110, H1=27, H2=56, H3=27, Work Bench: (R) =15


1	Nominal Model	Maximum Stroke	Base			Work Bench			
	Number	Length	L	В	E	W	D	А	С
	GAS02-400	20×20×7°	500	235	185	400	210	180	300
	GAS02-500	20×20×5°	600	285	285	500	285	280	400
	GAS02-750	20×20×3°	850	410	535	750	535	530	650



Slide table XXY Alignment Stage Motorized

Model

Unit: mm

	[Common dimension] Height: H=160, H1=40, H2=72, H3=48								
			Nominal Model Number		Work Bench				
					A1	A2	A3	A4	
			GAS03-1000		800	300	—	—	
			GAS03-1500		_	_	1300	350	
Nominal Model Number	Maximum Stroke Length	Work Bench			Work Bench				
		L	В	E	W	D	N	(R)	
GAS03-1000	30×30×4°	1200	380	635	1000	635	12	20	
GAS03-1500	30×30×2°	1700	540	1000	1500	1000	16	20	

Notes:

%Some pictures or photos shown in this catalog might vary from the actual products.

We might upgrade the outer appearance or spec without pre-notice; please inquire us before applying the products.

- We produce this catalog in a very serious manner; yet, we cannot be responsible to any possible error or missing texts in it.
- ☆For the export or export-purpose sales of our products & technologies, the basic policy is to comply with the espective foreign exchanges, trade acts and other related enactments.

 \times To export our products in a single-piece basis, please contact us first.

www.gmtlinear.com

GMT GLOBAL INC.

No.3, Lane 34, Minju Street, Shioushuei Township, Changhua County 50442, Taiwan(R.O.C) TEL : +886-4-7688320 FAX : +886-4-7688314 E-mail : sales@gmtglobalinc.com